Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980556368> ?p ?o ?g. }
- W2980556368 endingPage "442" @default.
- W2980556368 startingPage "442" @default.
- W2980556368 abstract "Accurate estimation of forest biomass to enable the mapping of forest C stocks over large areas is of considerable interest nowadays. Airborne laser scanning (ALS) systems bring a new perspective to forest inventories and subsequent biomass estimation. The objective of this research was to combine growth models used to update old inventory data to a reference year, low-density ALS data, and k-nearest neighbor (kNN) algorithm Random Forest to conduct biomass inventories aimed at estimating the C sequestration capacity in large Pinus plantations. We obtained a C stock in biomass (Wt-S) of 12.57 Mg ha−1, ranging significantly from 19.93 Mg ha−1 for P. halepensis to 49.05 Mg ha−1 for P. nigra, and a soil organic C stock of the composite soil samples (0–40 cm) ranging from 20.41 Mg ha−1 in P. sylvestris to 37.32 Mg ha−1 in P. halepensis. When generalizing these data to the whole area, we obtained an overall C-stock value of 48.01 Mg C ha−1, ranging from 23.96 Mg C ha−1 for P. halepensis to 58.09 Mg C ha−1 for P. nigra. Considering the mean value of the on-site C stock, the study area sustains 1,289,604 Mg per hectare (corresponding to 4,732,869 Mg CO2), with a net increase of 4.79 Mg ha−1 year−1. Such C cartography can help forest managers to improve forest silviculture with regard to C sequestration and, thus, climate change mitigation." @default.
- W2980556368 created "2019-10-25" @default.
- W2980556368 creator A5022077742 @default.
- W2980556368 creator A5029749676 @default.
- W2980556368 creator A5037486567 @default.
- W2980556368 creator A5037807325 @default.
- W2980556368 creator A5044406141 @default.
- W2980556368 creator A5091515269 @default.
- W2980556368 date "2019-10-17" @default.
- W2980556368 modified "2023-10-12" @default.
- W2980556368 title "Assessment of the Carbon Stock in Pine Plantations in Southern Spain through ALS Data and K-Nearest Neighbor Algorithm Based Models" @default.
- W2980556368 cites W1422516108 @default.
- W2980556368 cites W1506491031 @default.
- W2980556368 cites W1991576283 @default.
- W2980556368 cites W1995357577 @default.
- W2980556368 cites W2002730835 @default.
- W2980556368 cites W2003411636 @default.
- W2980556368 cites W2004541329 @default.
- W2980556368 cites W2011678967 @default.
- W2980556368 cites W2017960296 @default.
- W2980556368 cites W2024256560 @default.
- W2980556368 cites W2027672019 @default.
- W2980556368 cites W2028901390 @default.
- W2980556368 cites W2029256298 @default.
- W2980556368 cites W2029837710 @default.
- W2980556368 cites W2029875384 @default.
- W2980556368 cites W2037603065 @default.
- W2980556368 cites W2054058513 @default.
- W2980556368 cites W2056337900 @default.
- W2980556368 cites W2068393295 @default.
- W2980556368 cites W2084055527 @default.
- W2980556368 cites W2089178244 @default.
- W2980556368 cites W2106246184 @default.
- W2980556368 cites W2109631166 @default.
- W2980556368 cites W2114228414 @default.
- W2980556368 cites W2122024164 @default.
- W2980556368 cites W2127164496 @default.
- W2980556368 cites W2131472136 @default.
- W2980556368 cites W2141842474 @default.
- W2980556368 cites W2151009247 @default.
- W2980556368 cites W2160917602 @default.
- W2980556368 cites W2162043136 @default.
- W2980556368 cites W2162347516 @default.
- W2980556368 cites W2164127198 @default.
- W2980556368 cites W2277463625 @default.
- W2980556368 cites W2430239505 @default.
- W2980556368 cites W2460668451 @default.
- W2980556368 cites W2482464033 @default.
- W2980556368 cites W2520264764 @default.
- W2980556368 cites W2557040271 @default.
- W2980556368 cites W2567173804 @default.
- W2980556368 cites W2605216097 @default.
- W2980556368 cites W2625014437 @default.
- W2980556368 cites W2751723634 @default.
- W2980556368 cites W2763240495 @default.
- W2980556368 cites W2765343078 @default.
- W2980556368 cites W2765383515 @default.
- W2980556368 cites W2789265310 @default.
- W2980556368 cites W2789387508 @default.
- W2980556368 cites W2799705774 @default.
- W2980556368 cites W2802334860 @default.
- W2980556368 cites W2896791113 @default.
- W2980556368 cites W2929327614 @default.
- W2980556368 cites W2944767048 @default.
- W2980556368 doi "https://doi.org/10.3390/geosciences9100442" @default.
- W2980556368 hasPublicationYear "2019" @default.
- W2980556368 type Work @default.
- W2980556368 sameAs 2980556368 @default.
- W2980556368 citedByCount "8" @default.
- W2980556368 countsByYear W29805563682021 @default.
- W2980556368 countsByYear W29805563682022 @default.
- W2980556368 countsByYear W29805563682023 @default.
- W2980556368 crossrefType "journal-article" @default.
- W2980556368 hasAuthorship W2980556368A5022077742 @default.
- W2980556368 hasAuthorship W2980556368A5029749676 @default.
- W2980556368 hasAuthorship W2980556368A5037486567 @default.
- W2980556368 hasAuthorship W2980556368A5037807325 @default.
- W2980556368 hasAuthorship W2980556368A5044406141 @default.
- W2980556368 hasAuthorship W2980556368A5091515269 @default.
- W2980556368 hasBestOaLocation W29805563681 @default.
- W2980556368 hasConcept C115540264 @default.
- W2980556368 hasConcept C118518473 @default.
- W2980556368 hasConcept C132651083 @default.
- W2980556368 hasConcept C147103442 @default.
- W2980556368 hasConcept C166957645 @default.
- W2980556368 hasConcept C178790620 @default.
- W2980556368 hasConcept C185592680 @default.
- W2980556368 hasConcept C18903297 @default.
- W2980556368 hasConcept C202050865 @default.
- W2980556368 hasConcept C204036174 @default.
- W2980556368 hasConcept C205649164 @default.
- W2980556368 hasConcept C22884784 @default.
- W2980556368 hasConcept C2775966360 @default.
- W2980556368 hasConcept C28631016 @default.
- W2980556368 hasConcept C2994081031 @default.
- W2980556368 hasConcept C33923547 @default.
- W2980556368 hasConcept C39432304 @default.
- W2980556368 hasConcept C51399673 @default.