Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980647599> ?p ?o ?g. }
- W2980647599 endingPage "103056" @default.
- W2980647599 startingPage "103056" @default.
- W2980647599 abstract "A review is provided of first-documented occurrences of dust transport within Australia for the last century, but which later on were considerably improved as a result of access to satellite observations and extensive ground observations. This was followed by the use of the HYSPLIT tracking models that enabled people to determine the major sources of dust in Australia. As a result of several important studies, the Lake Eyre Basin in central Australia is now considered to be the main source of dust entrainment, although other regions do contribute to dust production. This is followed by examination of the occurrence over the last few decades of dust transport and deposition within Australia and across the Tasman Sea, with dust being deposited even as far as New Zealand. After that, consideration is given to the deposition of dust not only at sea around Australia but also in New Zealand during the Holocene and Late Quaternary. As a consequence of these observations, a shift in the direction of dust plumes exiting Australia is noted. For example, during the Last Glacial Maximum (LGM), a substantial northerly shift of the Trans-Tasman dust plume is recorded and this coincides with stronger westerlies and an equatorward shift of oceanic fronts such as the Intertropical Convergence and Subpolar and Antarctic Fronts that were located closer to Australia compared to today. Strengthening of the winds during the LGM may have prevented dust plumes from travelling over the southern part of the Tasman Sea, even perhaps reaching Antarctica. Examination of the dust components in cores in the western Pacific Ocean would address this question. The second part of the paper examines the geochemical fingerprints of dusts from Australia, South America and those recovered from Antarctic ice cores. Examination of atmospheric conditions that prevailed in the Southern Ocean around Antarctica during a major dust storm event that occurred in Australia in October 2002 helps identify how dust can be entrained around cold fronts and eventually reach the Antarctic mainland. Once again, it appears that Australian dust did travel as far as Antarctica more frequently during the Holocene, than prior to that time. New Zealand as a dust source to some Antarctic sites is also discussed. Examination of the isotopic fingerprints in Antarctic ice cores point to South America being the main source of dust during the Last Glacial Maximum and previous glacial periods, with intermittent occurrences likely to have come from Australia and New Zealand as well. It is postulated that Australian dust plumes did travel mostly over the Tasman Sea, and eventually over the western Pacific Ocean during the LGM, and frequently less so towards Tasmania and the Southern Ocean as a result of the strengthening of the westerlies and their northward shift. It transpires that the dust flux from Australia was much higher during the glacial periods. It appears also that the dust plumes that traverse the eastern Indian Ocean remained unchanged during the LGM. Finally, this paper concludes by identifying that there is a need to either obtain larger dust samples from ice cores, or use more elaborate analytical techniques to combine more than two isotopes to fingerprint the origin of dusts recovered in ice cores. Perhaps a combination of not only isotopes, but also rare earth elements and major elements would eventually provide a better definition of atmospheric circulation in the Southern Hemisphere for comparison between glacial and interglacial periods." @default.
- W2980647599 created "2019-10-25" @default.
- W2980647599 creator A5086759411 @default.
- W2980647599 date "2020-01-01" @default.
- W2980647599 modified "2023-09-27" @default.
- W2980647599 title "Airborne dust traffic from Australia in modern and Late Quaternary times" @default.
- W2980647599 cites W1500352920 @default.
- W2980647599 cites W1556220029 @default.
- W2980647599 cites W1563297885 @default.
- W2980647599 cites W1947412276 @default.
- W2980647599 cites W1963895982 @default.
- W2980647599 cites W1965634807 @default.
- W2980647599 cites W1965841742 @default.
- W2980647599 cites W1968660329 @default.
- W2980647599 cites W1972576591 @default.
- W2980647599 cites W1976496970 @default.
- W2980647599 cites W1976679675 @default.
- W2980647599 cites W1977192625 @default.
- W2980647599 cites W1978127544 @default.
- W2980647599 cites W1978563232 @default.
- W2980647599 cites W1980203794 @default.
- W2980647599 cites W1983822886 @default.
- W2980647599 cites W1984752169 @default.
- W2980647599 cites W1990892983 @default.
- W2980647599 cites W1992641015 @default.
- W2980647599 cites W1997109765 @default.
- W2980647599 cites W1999149960 @default.
- W2980647599 cites W2003873750 @default.
- W2980647599 cites W2021949139 @default.
- W2980647599 cites W2039157537 @default.
- W2980647599 cites W2042476750 @default.
- W2980647599 cites W2043637170 @default.
- W2980647599 cites W2046541010 @default.
- W2980647599 cites W2050925150 @default.
- W2980647599 cites W2051966249 @default.
- W2980647599 cites W2053881594 @default.
- W2980647599 cites W2054153452 @default.
- W2980647599 cites W2054979942 @default.
- W2980647599 cites W2055602517 @default.
- W2980647599 cites W2064462332 @default.
- W2980647599 cites W2064656106 @default.
- W2980647599 cites W2066126682 @default.
- W2980647599 cites W2067081966 @default.
- W2980647599 cites W2067661300 @default.
- W2980647599 cites W2067943665 @default.
- W2980647599 cites W2068142175 @default.
- W2980647599 cites W2068859558 @default.
- W2980647599 cites W2069367562 @default.
- W2980647599 cites W2071279220 @default.
- W2980647599 cites W2077580869 @default.
- W2980647599 cites W2078689557 @default.
- W2980647599 cites W2079560538 @default.
- W2980647599 cites W2080101287 @default.
- W2980647599 cites W2086060638 @default.
- W2980647599 cites W2086304051 @default.
- W2980647599 cites W2093871984 @default.
- W2980647599 cites W2098023941 @default.
- W2980647599 cites W2099800029 @default.
- W2980647599 cites W2103272092 @default.
- W2980647599 cites W2110171989 @default.
- W2980647599 cites W2114450363 @default.
- W2980647599 cites W2116001649 @default.
- W2980647599 cites W2117499265 @default.
- W2980647599 cites W2118824143 @default.
- W2980647599 cites W2125237996 @default.
- W2980647599 cites W2132770017 @default.
- W2980647599 cites W2142807835 @default.
- W2980647599 cites W2142892874 @default.
- W2980647599 cites W2145624078 @default.
- W2980647599 cites W2150911889 @default.
- W2980647599 cites W2151686568 @default.
- W2980647599 cites W2156933844 @default.
- W2980647599 cites W2158496600 @default.
- W2980647599 cites W2160662024 @default.
- W2980647599 cites W2162569569 @default.
- W2980647599 cites W2166681005 @default.
- W2980647599 cites W2179095720 @default.
- W2980647599 cites W2182094866 @default.
- W2980647599 cites W2277868022 @default.
- W2980647599 cites W2318104397 @default.
- W2980647599 cites W2327260351 @default.
- W2980647599 cites W2465072826 @default.
- W2980647599 cites W2593546597 @default.
- W2980647599 cites W2606769134 @default.
- W2980647599 cites W2609433094 @default.
- W2980647599 cites W2614153376 @default.
- W2980647599 cites W2771599928 @default.
- W2980647599 cites W2896745429 @default.
- W2980647599 cites W2896775828 @default.
- W2980647599 cites W2911391578 @default.
- W2980647599 cites W2912156434 @default.
- W2980647599 cites W3003813372 @default.
- W2980647599 cites W4233517809 @default.
- W2980647599 doi "https://doi.org/10.1016/j.gloplacha.2019.103056" @default.
- W2980647599 hasPublicationYear "2020" @default.
- W2980647599 type Work @default.
- W2980647599 sameAs 2980647599 @default.
- W2980647599 citedByCount "8" @default.