Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980657419> ?p ?o ?g. }
- W2980657419 endingPage "5832" @default.
- W2980657419 startingPage "5832" @default.
- W2980657419 abstract "A deep-learning (DL) based noise reduction algorithm, in combination with a vessel shadow compensation method and a three-dimensional (3D) segmentation technique, has been developed to achieve, to the authors best knowledge, the first automatic segmentation of the anterior surface of the lamina cribrosa (LC) in volumetric ophthalmic optical coherence tomography (OCT) scans. The present DL-based OCT noise reduction algorithm was trained without the need of noise-free ground truth images by utilizing the latest development in deep learning of de-noising from single noisy images, and was demonstrated to be able to cover more locations in the retina and disease cases of different types to achieve high robustness. Compared with the original single OCT images, a 6.6 dB improvement in peak signal-to-noise ratio and a 0.65 improvement in the structural similarity index were achieved. The vessel shadow compensation method analyzes the energy profile in each A-line and automatically compensates the pixel intensity of locations underneath the detected blood vessel. Combining the noise reduction algorithm and the shadow compensation and contrast enhancement technique, medical experts were able to identify the anterior surface of the LC in 98.3% of the OCT images. The 3D segmentation algorithm employs a two-round procedure based on gradients information and information from neighboring images. An accuracy of 90.6% was achieved in a validation study involving 180 individual B-scans from 36 subjects, compared to 64.4% in raw images. This imaging and analysis strategy enables the first automatic complete view of the anterior LC surface, to the authors best knowledge, which may have the potentials in new LC parameters development for glaucoma diagnosis and management." @default.
- W2980657419 created "2019-10-25" @default.
- W2980657419 creator A5006854001 @default.
- W2980657419 creator A5010175476 @default.
- W2980657419 creator A5025647523 @default.
- W2980657419 creator A5028754460 @default.
- W2980657419 creator A5033571681 @default.
- W2980657419 creator A5049283410 @default.
- W2980657419 creator A5064280359 @default.
- W2980657419 creator A5070982165 @default.
- W2980657419 creator A5075339397 @default.
- W2980657419 creator A5086274249 @default.
- W2980657419 date "2019-10-21" @default.
- W2980657419 modified "2023-10-16" @default.
- W2980657419 title "Deep learning based noise reduction method for automatic 3D segmentation of the anterior of lamina cribrosa in optical coherence tomography volumetric scans" @default.
- W2980657419 cites W1964458657 @default.
- W2980657419 cites W1969824248 @default.
- W2980657419 cites W1977992028 @default.
- W2980657419 cites W1978097677 @default.
- W2980657419 cites W1981071602 @default.
- W2980657419 cites W1983919643 @default.
- W2980657419 cites W2001499672 @default.
- W2980657419 cites W2006073837 @default.
- W2980657419 cites W2011237852 @default.
- W2980657419 cites W2012967657 @default.
- W2980657419 cites W2013107002 @default.
- W2980657419 cites W2022352073 @default.
- W2980657419 cites W2026516529 @default.
- W2980657419 cites W2034742711 @default.
- W2980657419 cites W2052239345 @default.
- W2980657419 cites W2057266151 @default.
- W2980657419 cites W2059695076 @default.
- W2980657419 cites W2061240737 @default.
- W2980657419 cites W2066135440 @default.
- W2980657419 cites W2104788465 @default.
- W2980657419 cites W2120572565 @default.
- W2980657419 cites W2121357494 @default.
- W2980657419 cites W2124502133 @default.
- W2980657419 cites W2127318120 @default.
- W2980657419 cites W2130075876 @default.
- W2980657419 cites W2133665775 @default.
- W2980657419 cites W2139792068 @default.
- W2980657419 cites W2145023731 @default.
- W2980657419 cites W2155366050 @default.
- W2980657419 cites W2168451815 @default.
- W2980657419 cites W2171853084 @default.
- W2980657419 cites W2194647744 @default.
- W2980657419 cites W2276000118 @default.
- W2980657419 cites W2418802570 @default.
- W2980657419 cites W2508457857 @default.
- W2980657419 cites W2575285771 @default.
- W2980657419 cites W2583383498 @default.
- W2980657419 cites W2617128058 @default.
- W2980657419 cites W2625039771 @default.
- W2980657419 cites W2754313360 @default.
- W2980657419 cites W2784344583 @default.
- W2980657419 cites W2811153268 @default.
- W2980657419 cites W2894857791 @default.
- W2980657419 cites W2901310501 @default.
- W2980657419 cites W2943200208 @default.
- W2980657419 cites W2950501364 @default.
- W2980657419 cites W3104725225 @default.
- W2980657419 doi "https://doi.org/10.1364/boe.10.005832" @default.
- W2980657419 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6865099" @default.
- W2980657419 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31799050" @default.
- W2980657419 hasPublicationYear "2019" @default.
- W2980657419 type Work @default.
- W2980657419 sameAs 2980657419 @default.
- W2980657419 citedByCount "24" @default.
- W2980657419 countsByYear W29806574192020 @default.
- W2980657419 countsByYear W29806574192021 @default.
- W2980657419 countsByYear W29806574192022 @default.
- W2980657419 countsByYear W29806574192023 @default.
- W2980657419 crossrefType "journal-article" @default.
- W2980657419 hasAuthorship W2980657419A5006854001 @default.
- W2980657419 hasAuthorship W2980657419A5010175476 @default.
- W2980657419 hasAuthorship W2980657419A5025647523 @default.
- W2980657419 hasAuthorship W2980657419A5028754460 @default.
- W2980657419 hasAuthorship W2980657419A5033571681 @default.
- W2980657419 hasAuthorship W2980657419A5049283410 @default.
- W2980657419 hasAuthorship W2980657419A5064280359 @default.
- W2980657419 hasAuthorship W2980657419A5070982165 @default.
- W2980657419 hasAuthorship W2980657419A5075339397 @default.
- W2980657419 hasAuthorship W2980657419A5086274249 @default.
- W2980657419 hasBestOaLocation W29806574191 @default.
- W2980657419 hasConcept C104317684 @default.
- W2980657419 hasConcept C115961682 @default.
- W2980657419 hasConcept C120665830 @default.
- W2980657419 hasConcept C121332964 @default.
- W2980657419 hasConcept C146849305 @default.
- W2980657419 hasConcept C154945302 @default.
- W2980657419 hasConcept C163294075 @default.
- W2980657419 hasConcept C185592680 @default.
- W2980657419 hasConcept C2778818243 @default.
- W2980657419 hasConcept C31972630 @default.
- W2980657419 hasConcept C41008148 @default.
- W2980657419 hasConcept C55493867 @default.
- W2980657419 hasConcept C63479239 @default.