Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980681842> ?p ?o ?g. }
- W2980681842 endingPage "9333" @default.
- W2980681842 startingPage "9315" @default.
- W2980681842 abstract "Knowledge on the determinants and patterns of water demand for different consumers supports the design of customized demand management strategies. Smart meters coupled with big data analytics tools create a unique opportunity to support such strategies. Yet, at present, the information content of smart meter data is not fully mined and usually needs to be complemented with water fixture inventory and survey data to achieve detailed customer segmentation based on end use water usage. In this paper, we developed a data-driven approach that extracts information on heterogeneous water end use routines, main end use components, and temporal characteristics, only via data mining existing smart meter readings at the scale of individual households. We tested our approach on data from 327 households in Australia, each monitored with smart meters logging water use readings every 5 s. As part of the approach, we first disaggregated the household-level water use time series into different end uses via Autoflow. We then adapted a customer segmentation based on eigenbehavior analysis to discriminate among heterogeneous water end use routines and identify clusters of consumers presenting similar routines. Results revealed three main water end use profile clusters, each characterized by a primary end use: shower, clothes washing, and irrigation. Time-of-use and intensity-of-use differences exist within each class, as well as different characteristics of regularity and periodicity over time. Our customer segmentation analysis approach provides utilities with a concise snapshot of recurrent water use routines from smart meter data and can be used to support customized demand management strategies." @default.
- W2980681842 created "2019-10-25" @default.
- W2980681842 creator A5003180662 @default.
- W2980681842 creator A5010973652 @default.
- W2980681842 creator A5030294949 @default.
- W2980681842 creator A5040689425 @default.
- W2980681842 creator A5074316043 @default.
- W2980681842 creator A5074465966 @default.
- W2980681842 date "2019-11-01" @default.
- W2980681842 modified "2023-10-11" @default.
- W2980681842 title "Data Mining to Uncover Heterogeneous Water Use Behaviors From Smart Meter Data" @default.
- W2980681842 cites W1049614015 @default.
- W2980681842 cites W1541087966 @default.
- W2980681842 cites W1834430000 @default.
- W2980681842 cites W1987971958 @default.
- W2980681842 cites W1989237617 @default.
- W2980681842 cites W1989866797 @default.
- W2980681842 cites W1990444226 @default.
- W2980681842 cites W2014004669 @default.
- W2980681842 cites W2036628004 @default.
- W2980681842 cites W2037910312 @default.
- W2980681842 cites W2039252235 @default.
- W2980681842 cites W2074895072 @default.
- W2980681842 cites W2103226621 @default.
- W2980681842 cites W2150715569 @default.
- W2980681842 cites W2167611291 @default.
- W2980681842 cites W2169055640 @default.
- W2980681842 cites W2169755932 @default.
- W2980681842 cites W2228763601 @default.
- W2980681842 cites W2259001943 @default.
- W2980681842 cites W2282472744 @default.
- W2980681842 cites W2285595479 @default.
- W2980681842 cites W2285643495 @default.
- W2980681842 cites W2301739719 @default.
- W2980681842 cites W2336358715 @default.
- W2980681842 cites W2406388864 @default.
- W2980681842 cites W2600845876 @default.
- W2980681842 cites W2765714724 @default.
- W2980681842 cites W2772360262 @default.
- W2980681842 cites W2774835917 @default.
- W2980681842 cites W2780842280 @default.
- W2980681842 cites W2786684807 @default.
- W2980681842 cites W2789315551 @default.
- W2980681842 cites W2792657176 @default.
- W2980681842 cites W2793158827 @default.
- W2980681842 cites W2794188809 @default.
- W2980681842 cites W2797478162 @default.
- W2980681842 cites W2897139947 @default.
- W2980681842 cites W2903388138 @default.
- W2980681842 cites W2907918932 @default.
- W2980681842 cites W2916591582 @default.
- W2980681842 cites W4242314103 @default.
- W2980681842 cites W4244928213 @default.
- W2980681842 cites W3001386152 @default.
- W2980681842 doi "https://doi.org/10.1029/2019wr024897" @default.
- W2980681842 hasPublicationYear "2019" @default.
- W2980681842 type Work @default.
- W2980681842 sameAs 2980681842 @default.
- W2980681842 citedByCount "52" @default.
- W2980681842 countsByYear W29806818422020 @default.
- W2980681842 countsByYear W29806818422021 @default.
- W2980681842 countsByYear W29806818422022 @default.
- W2980681842 countsByYear W29806818422023 @default.
- W2980681842 crossrefType "journal-article" @default.
- W2980681842 hasAuthorship W2980681842A5003180662 @default.
- W2980681842 hasAuthorship W2980681842A5010973652 @default.
- W2980681842 hasAuthorship W2980681842A5030294949 @default.
- W2980681842 hasAuthorship W2980681842A5040689425 @default.
- W2980681842 hasAuthorship W2980681842A5074316043 @default.
- W2980681842 hasAuthorship W2980681842A5074465966 @default.
- W2980681842 hasBestOaLocation W29806818421 @default.
- W2980681842 hasConcept C10558101 @default.
- W2980681842 hasConcept C119599485 @default.
- W2980681842 hasConcept C124101348 @default.
- W2980681842 hasConcept C127413603 @default.
- W2980681842 hasConcept C149207113 @default.
- W2980681842 hasConcept C175801342 @default.
- W2980681842 hasConcept C18903297 @default.
- W2980681842 hasConcept C2522767166 @default.
- W2980681842 hasConcept C2779510800 @default.
- W2980681842 hasConcept C41008148 @default.
- W2980681842 hasConcept C55282118 @default.
- W2980681842 hasConcept C75684735 @default.
- W2980681842 hasConcept C77088390 @default.
- W2980681842 hasConcept C79158427 @default.
- W2980681842 hasConcept C86803240 @default.
- W2980681842 hasConceptScore W2980681842C10558101 @default.
- W2980681842 hasConceptScore W2980681842C119599485 @default.
- W2980681842 hasConceptScore W2980681842C124101348 @default.
- W2980681842 hasConceptScore W2980681842C127413603 @default.
- W2980681842 hasConceptScore W2980681842C149207113 @default.
- W2980681842 hasConceptScore W2980681842C175801342 @default.
- W2980681842 hasConceptScore W2980681842C18903297 @default.
- W2980681842 hasConceptScore W2980681842C2522767166 @default.
- W2980681842 hasConceptScore W2980681842C2779510800 @default.
- W2980681842 hasConceptScore W2980681842C41008148 @default.
- W2980681842 hasConceptScore W2980681842C55282118 @default.
- W2980681842 hasConceptScore W2980681842C75684735 @default.