Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980685039> ?p ?o ?g. }
- W2980685039 endingPage "3358" @default.
- W2980685039 startingPage "3358" @default.
- W2980685039 abstract "This study aims to investigate the physical and chemical characterization of six fly ash samples obtained from different municipal solid waste incinerators (MSWIs), namely grate furnaces, rotary kiln, and fluidized bed reactor, to determine their potential for CO2 and thermochemical energy storage (TCES). Representative samples were characterized via simultaneous thermal analysis (STA) in different atmospheres, i.e., N2, air, H2O, CO2, and H2O/CO2, to identify fly ash samples that can meet the minimum requirements, i.e., charging, discharging, and cycling stability, for its consideration as TCES and CO2-storage materials and to determine their energy contents. Furthermore, other techniques, such as inductively coupled plasma optical emission spectroscopy, X-ray fluorescence (XRF) spectrometry, X-ray diffraction (XRD), scanning electron microscopy, leachability tests, specific surface area measurement based on the Brunauer–Emmett–Teller method, and particle-size distribution measurement, were performed. XRF analysis showed that calcium oxide is one of the main components in fly ash, which is a potentially suitable component for TCES systems. XRD results revealed information regarding the crystal structure and phases of various elements, including that of Ca. The STA measurements showed that the samples can store thermal heat with energy contents of 50–394 kJ/kg (charging step). For one fly ash sample obtained from a grate furnace, the release of the stored thermal heat under the selected experimental conditions (discharging step) was demonstrated. The cycling stability tests were conducted thrice, and they were successful for the selected sample. One fly ash sample could store CO2 with a storage capacity of 27 kg CO2/ton based on results obtained under the selected experimental conditions in STA. Samples from rotary kiln and fluidized bed were heated up to 1150 °C in an N2 atmosphere, resulting in complete melting of samples in crucibles; however, other samples obtained from grate furnaces formed compacted powders after undergoing the same thermal treatment in STA. Samples from different grate furnaces showed similarities in their chemical and physical characterization. The leachability test according to the standard (EN 12457-4 (2002)) using water in a ratio of 10 L/S and showed that the leachate of heavy metals is below the maximum permissible values for nonhazardous materials (except for Pb), excluding the fly ash sample obtained using fluidized bed technology. The leachate contents of Cd and Mn in the fly ash samples obtained from the rotary kiln were higher than those in other samples. Characterization performed herein helped in determining the suitable fly ash samples that can be considered as potential CO2-storage and TCES materials." @default.
- W2980685039 created "2019-10-25" @default.
- W2980685039 creator A5000089298 @default.
- W2980685039 creator A5011010095 @default.
- W2980685039 creator A5023591198 @default.
- W2980685039 creator A5026867563 @default.
- W2980685039 creator A5042494899 @default.
- W2980685039 creator A5055371975 @default.
- W2980685039 creator A5055928331 @default.
- W2980685039 creator A5057494880 @default.
- W2980685039 creator A5058978219 @default.
- W2980685039 creator A5066265146 @default.
- W2980685039 creator A5074425961 @default.
- W2980685039 creator A5079973414 @default.
- W2980685039 creator A5081982010 @default.
- W2980685039 creator A5087453009 @default.
- W2980685039 date "2019-10-15" @default.
- W2980685039 modified "2023-10-14" @default.
- W2980685039 title "Comparing Fly Ash Samples from Different Types of Incinerators for Their Potential as Storage Materials for Thermochemical Energy and CO2" @default.
- W2980685039 cites W1514658560 @default.
- W2980685039 cites W1971445102 @default.
- W2980685039 cites W1973089138 @default.
- W2980685039 cites W1973573387 @default.
- W2980685039 cites W1982729995 @default.
- W2980685039 cites W1986280467 @default.
- W2980685039 cites W1990764461 @default.
- W2980685039 cites W1997292039 @default.
- W2980685039 cites W2002174823 @default.
- W2980685039 cites W2003761146 @default.
- W2980685039 cites W2006072715 @default.
- W2980685039 cites W2018794876 @default.
- W2980685039 cites W2018813583 @default.
- W2980685039 cites W2018923673 @default.
- W2980685039 cites W2032486724 @default.
- W2980685039 cites W2038350462 @default.
- W2980685039 cites W2045893450 @default.
- W2980685039 cites W2050814718 @default.
- W2980685039 cites W2074764973 @default.
- W2980685039 cites W2085750719 @default.
- W2980685039 cites W2112845989 @default.
- W2980685039 cites W2138012717 @default.
- W2980685039 cites W2150529254 @default.
- W2980685039 cites W2164158959 @default.
- W2980685039 cites W2168998526 @default.
- W2980685039 cites W2273779102 @default.
- W2980685039 cites W2278885981 @default.
- W2980685039 cites W2283598072 @default.
- W2980685039 cites W2491169421 @default.
- W2980685039 cites W2505630832 @default.
- W2980685039 cites W2510605999 @default.
- W2980685039 cites W2517989779 @default.
- W2980685039 cites W2520577373 @default.
- W2980685039 cites W2563680822 @default.
- W2980685039 cites W2613136331 @default.
- W2980685039 cites W2621499556 @default.
- W2980685039 cites W2731599354 @default.
- W2980685039 cites W2773337454 @default.
- W2980685039 cites W2774866170 @default.
- W2980685039 cites W2799549927 @default.
- W2980685039 cites W2902901541 @default.
- W2980685039 cites W2904455080 @default.
- W2980685039 cites W2912376570 @default.
- W2980685039 cites W2912608882 @default.
- W2980685039 cites W2963760153 @default.
- W2980685039 doi "https://doi.org/10.3390/ma12203358" @default.
- W2980685039 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6829350" @default.
- W2980685039 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31618854" @default.
- W2980685039 hasPublicationYear "2019" @default.
- W2980685039 type Work @default.
- W2980685039 sameAs 2980685039 @default.
- W2980685039 citedByCount "5" @default.
- W2980685039 countsByYear W29806850392020 @default.
- W2980685039 countsByYear W29806850392021 @default.
- W2980685039 countsByYear W29806850392022 @default.
- W2980685039 crossrefType "journal-article" @default.
- W2980685039 hasAuthorship W2980685039A5000089298 @default.
- W2980685039 hasAuthorship W2980685039A5011010095 @default.
- W2980685039 hasAuthorship W2980685039A5023591198 @default.
- W2980685039 hasAuthorship W2980685039A5026867563 @default.
- W2980685039 hasAuthorship W2980685039A5042494899 @default.
- W2980685039 hasAuthorship W2980685039A5055371975 @default.
- W2980685039 hasAuthorship W2980685039A5055928331 @default.
- W2980685039 hasAuthorship W2980685039A5057494880 @default.
- W2980685039 hasAuthorship W2980685039A5058978219 @default.
- W2980685039 hasAuthorship W2980685039A5066265146 @default.
- W2980685039 hasAuthorship W2980685039A5074425961 @default.
- W2980685039 hasAuthorship W2980685039A5079973414 @default.
- W2980685039 hasAuthorship W2980685039A5081982010 @default.
- W2980685039 hasAuthorship W2980685039A5087453009 @default.
- W2980685039 hasBestOaLocation W29806850391 @default.
- W2980685039 hasConcept C107872376 @default.
- W2980685039 hasConcept C113196181 @default.
- W2980685039 hasConcept C121332964 @default.
- W2980685039 hasConcept C127413603 @default.
- W2980685039 hasConcept C159985019 @default.
- W2980685039 hasConcept C163258240 @default.
- W2980685039 hasConcept C185592680 @default.
- W2980685039 hasConcept C191897082 @default.