Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980695940> ?p ?o ?g. }
- W2980695940 endingPage "150434" @default.
- W2980695940 startingPage "150423" @default.
- W2980695940 abstract "Driver fatigue is one of the causal factors for traffic accidents. Actions of facial units convey various information from our brains. This paper proposed a comprehensive approach to explore whether pattern of sequences of the driver's facial landmarks changes from the alert start to the fatigue state. A driving-simulator-based experiment was designed and conducted. Videos of 21 participants' faces were recorded during the experiment, together with subjective and others' assessment of the level of alertness. Sequences of eye aspect ratio (EAR) and mouth aspect ratio (MAR) were calculated based on facial landmarks. Totally 21 feature candidates including Percent eye-closure over a fixed time window (PERCLOS), blink rate, statistics of blink duration, closing speed, reopening speed and number of yawns were extracted. A mental fatigue assessment model is proposed after feature selection. Four machine learning algorithms were used to build the assessment model of fatigue. The best performance was achieved by logistic regression, with cross-validation accuracies of 83.7% and 85.4%. This study may contribute to the development of driver fatigue monitoring system for automotive ergonomics." @default.
- W2980695940 created "2019-10-25" @default.
- W2980695940 creator A5014309433 @default.
- W2980695940 creator A5029149623 @default.
- W2980695940 creator A5060556706 @default.
- W2980695940 creator A5078255726 @default.
- W2980695940 creator A5090434992 @default.
- W2980695940 date "2019-01-01" @default.
- W2980695940 modified "2023-10-12" @default.
- W2980695940 title "Assessment of Driver Mental Fatigue Using Facial Landmarks" @default.
- W2980695940 cites W1996754940 @default.
- W2980695940 cites W2013926069 @default.
- W2980695940 cites W2015393976 @default.
- W2980695940 cites W2019304502 @default.
- W2980695940 cites W2019883359 @default.
- W2980695940 cites W2046996079 @default.
- W2980695940 cites W2048172593 @default.
- W2980695940 cites W2071878275 @default.
- W2980695940 cites W2083908428 @default.
- W2980695940 cites W2092728879 @default.
- W2980695940 cites W2116646930 @default.
- W2980695940 cites W2132417262 @default.
- W2980695940 cites W2140336646 @default.
- W2980695940 cites W2154053567 @default.
- W2980695940 cites W2171221410 @default.
- W2980695940 cites W2259847221 @default.
- W2980695940 cites W2286482604 @default.
- W2980695940 cites W2323127344 @default.
- W2980695940 cites W2335678021 @default.
- W2980695940 cites W2351521495 @default.
- W2980695940 cites W2556684257 @default.
- W2980695940 cites W2592810172 @default.
- W2980695940 cites W2619709118 @default.
- W2980695940 cites W2620129414 @default.
- W2980695940 cites W2751088292 @default.
- W2980695940 cites W2765723052 @default.
- W2980695940 cites W2769915988 @default.
- W2980695940 cites W2793667632 @default.
- W2980695940 cites W2799501394 @default.
- W2980695940 cites W2883366162 @default.
- W2980695940 cites W2887033431 @default.
- W2980695940 cites W2890168959 @default.
- W2980695940 cites W2890229793 @default.
- W2980695940 cites W2909963827 @default.
- W2980695940 cites W2913250814 @default.
- W2980695940 cites W2937494409 @default.
- W2980695940 cites W2943512776 @default.
- W2980695940 cites W2945361018 @default.
- W2980695940 cites W2945891083 @default.
- W2980695940 cites W2946322958 @default.
- W2980695940 doi "https://doi.org/10.1109/access.2019.2947692" @default.
- W2980695940 hasPublicationYear "2019" @default.
- W2980695940 type Work @default.
- W2980695940 sameAs 2980695940 @default.
- W2980695940 citedByCount "24" @default.
- W2980695940 countsByYear W29806959402020 @default.
- W2980695940 countsByYear W29806959402021 @default.
- W2980695940 countsByYear W29806959402022 @default.
- W2980695940 countsByYear W29806959402023 @default.
- W2980695940 crossrefType "journal-article" @default.
- W2980695940 hasAuthorship W2980695940A5014309433 @default.
- W2980695940 hasAuthorship W2980695940A5029149623 @default.
- W2980695940 hasAuthorship W2980695940A5060556706 @default.
- W2980695940 hasAuthorship W2980695940A5078255726 @default.
- W2980695940 hasAuthorship W2980695940A5090434992 @default.
- W2980695940 hasBestOaLocation W29806959401 @default.
- W2980695940 hasConcept C118552586 @default.
- W2980695940 hasConcept C138885662 @default.
- W2980695940 hasConcept C153180895 @default.
- W2980695940 hasConcept C154945302 @default.
- W2980695940 hasConcept C15744967 @default.
- W2980695940 hasConcept C17744445 @default.
- W2980695940 hasConcept C199539241 @default.
- W2980695940 hasConcept C200678441 @default.
- W2980695940 hasConcept C2776401178 @default.
- W2980695940 hasConcept C2778775528 @default.
- W2980695940 hasConcept C2780689630 @default.
- W2980695940 hasConcept C41008148 @default.
- W2980695940 hasConcept C41895202 @default.
- W2980695940 hasConcept C44154836 @default.
- W2980695940 hasConcept C52622490 @default.
- W2980695940 hasConceptScore W2980695940C118552586 @default.
- W2980695940 hasConceptScore W2980695940C138885662 @default.
- W2980695940 hasConceptScore W2980695940C153180895 @default.
- W2980695940 hasConceptScore W2980695940C154945302 @default.
- W2980695940 hasConceptScore W2980695940C15744967 @default.
- W2980695940 hasConceptScore W2980695940C17744445 @default.
- W2980695940 hasConceptScore W2980695940C199539241 @default.
- W2980695940 hasConceptScore W2980695940C200678441 @default.
- W2980695940 hasConceptScore W2980695940C2776401178 @default.
- W2980695940 hasConceptScore W2980695940C2778775528 @default.
- W2980695940 hasConceptScore W2980695940C2780689630 @default.
- W2980695940 hasConceptScore W2980695940C41008148 @default.
- W2980695940 hasConceptScore W2980695940C41895202 @default.
- W2980695940 hasConceptScore W2980695940C44154836 @default.
- W2980695940 hasConceptScore W2980695940C52622490 @default.
- W2980695940 hasFunder F4320321001 @default.
- W2980695940 hasFunder F4320323067 @default.