Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980775795> ?p ?o ?g. }
- W2980775795 endingPage "e14971" @default.
- W2980775795 startingPage "e14971" @default.
- W2980775795 abstract "Background Since its inception, artificial intelligence has aimed to use computers to help make clinical diagnoses. Evidence-based medical reasoning is important for patient care. Inferring clinical diagnoses is a crucial step during the patient encounter. Previous works mainly used expert systems or machine learning–based methods to predict the International Classification of Diseases - Clinical Modification codes based on electronic health records. We report an alternative approach: inference of clinical diagnoses from patients’ reported symptoms and physicians’ clinical observations. Objective We aimed to report a natural language processing system for generating medical assessments based on patient information described in the electronic health record (EHR) notes. Methods We processed EHR notes into the Subjective, Objective, Assessment, and Plan sections. We trained a neural network model for medical assessment generation (N2MAG). Our N2MAG is an innovative deep neural model that uses the Subjective and Objective sections of an EHR note to automatically generate an “expert-like” assessment of the patient. N2MAG can be trained in an end-to-end fashion and does not require feature engineering and external knowledge resources. Results We evaluated N2MAG and the baseline models both quantitatively and qualitatively. Evaluated by both the Recall-Oriented Understudy for Gisting Evaluation metrics and domain experts, our results show that N2MAG outperformed the existing state-of-the-art baseline models. Conclusions N2MAG could generate a medical assessment from the Subject and Objective section descriptions in EHR notes. Future work will assess its potential for providing clinical decision support." @default.
- W2980775795 created "2019-10-25" @default.
- W2980775795 creator A5017601806 @default.
- W2980775795 creator A5045738205 @default.
- W2980775795 creator A5083079672 @default.
- W2980775795 date "2020-01-15" @default.
- W2980775795 modified "2023-10-16" @default.
- W2980775795 title "Generating Medical Assessments Using a Neural Network Model: Algorithm Development and Validation" @default.
- W2980775795 cites W1997057722 @default.
- W2980775795 cites W2064675550 @default.
- W2980775795 cites W2088833820 @default.
- W2980775795 cites W2284851926 @default.
- W2980775795 cites W2606974598 @default.
- W2980775795 cites W2625625371 @default.
- W2980775795 cites W2740718109 @default.
- W2980775795 cites W2744939501 @default.
- W2980775795 cites W2767350626 @default.
- W2980775795 cites W2899011686 @default.
- W2980775795 cites W2928818852 @default.
- W2980775795 cites W2933254171 @default.
- W2980775795 cites W2962996600 @default.
- W2980775795 cites W2963260202 @default.
- W2980775795 cites W2963463964 @default.
- W2980775795 cites W2964165364 @default.
- W2980775795 cites W948663339 @default.
- W2980775795 doi "https://doi.org/10.2196/14971" @default.
- W2980775795 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7006435" @default.
- W2980775795 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31939742" @default.
- W2980775795 hasPublicationYear "2020" @default.
- W2980775795 type Work @default.
- W2980775795 sameAs 2980775795 @default.
- W2980775795 citedByCount "3" @default.
- W2980775795 countsByYear W29807757952020 @default.
- W2980775795 countsByYear W29807757952022 @default.
- W2980775795 countsByYear W29807757952023 @default.
- W2980775795 crossrefType "journal-article" @default.
- W2980775795 hasAuthorship W2980775795A5017601806 @default.
- W2980775795 hasAuthorship W2980775795A5045738205 @default.
- W2980775795 hasAuthorship W2980775795A5083079672 @default.
- W2980775795 hasBestOaLocation W29807757951 @default.
- W2980775795 hasConcept C105002631 @default.
- W2980775795 hasConcept C107327155 @default.
- W2980775795 hasConcept C108583219 @default.
- W2980775795 hasConcept C111368507 @default.
- W2980775795 hasConcept C119857082 @default.
- W2980775795 hasConcept C12725497 @default.
- W2980775795 hasConcept C127313418 @default.
- W2980775795 hasConcept C134306372 @default.
- W2980775795 hasConcept C142724271 @default.
- W2980775795 hasConcept C148524875 @default.
- W2980775795 hasConcept C154945302 @default.
- W2980775795 hasConcept C2776214188 @default.
- W2980775795 hasConcept C2778827112 @default.
- W2980775795 hasConcept C33923547 @default.
- W2980775795 hasConcept C36503486 @default.
- W2980775795 hasConcept C41008148 @default.
- W2980775795 hasConcept C50644808 @default.
- W2980775795 hasConcept C534262118 @default.
- W2980775795 hasConcept C58328972 @default.
- W2980775795 hasConcept C63527458 @default.
- W2980775795 hasConcept C71924100 @default.
- W2980775795 hasConceptScore W2980775795C105002631 @default.
- W2980775795 hasConceptScore W2980775795C107327155 @default.
- W2980775795 hasConceptScore W2980775795C108583219 @default.
- W2980775795 hasConceptScore W2980775795C111368507 @default.
- W2980775795 hasConceptScore W2980775795C119857082 @default.
- W2980775795 hasConceptScore W2980775795C12725497 @default.
- W2980775795 hasConceptScore W2980775795C127313418 @default.
- W2980775795 hasConceptScore W2980775795C134306372 @default.
- W2980775795 hasConceptScore W2980775795C142724271 @default.
- W2980775795 hasConceptScore W2980775795C148524875 @default.
- W2980775795 hasConceptScore W2980775795C154945302 @default.
- W2980775795 hasConceptScore W2980775795C2776214188 @default.
- W2980775795 hasConceptScore W2980775795C2778827112 @default.
- W2980775795 hasConceptScore W2980775795C33923547 @default.
- W2980775795 hasConceptScore W2980775795C36503486 @default.
- W2980775795 hasConceptScore W2980775795C41008148 @default.
- W2980775795 hasConceptScore W2980775795C50644808 @default.
- W2980775795 hasConceptScore W2980775795C534262118 @default.
- W2980775795 hasConceptScore W2980775795C58328972 @default.
- W2980775795 hasConceptScore W2980775795C63527458 @default.
- W2980775795 hasConceptScore W2980775795C71924100 @default.
- W2980775795 hasIssue "1" @default.
- W2980775795 hasLocation W29807757951 @default.
- W2980775795 hasLocation W29807757952 @default.
- W2980775795 hasLocation W29807757953 @default.
- W2980775795 hasLocation W29807757954 @default.
- W2980775795 hasLocation W29807757955 @default.
- W2980775795 hasLocation W29807757956 @default.
- W2980775795 hasOpenAccess W2980775795 @default.
- W2980775795 hasPrimaryLocation W29807757951 @default.
- W2980775795 hasRelatedWork W2009977178 @default.
- W2980775795 hasRelatedWork W2124618300 @default.
- W2980775795 hasRelatedWork W2942650110 @default.
- W2980775795 hasRelatedWork W2968586400 @default.
- W2980775795 hasRelatedWork W2980775795 @default.
- W2980775795 hasRelatedWork W4281986673 @default.
- W2980775795 hasRelatedWork W4309637067 @default.