Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980778868> ?p ?o ?g. }
- W2980778868 endingPage "1459" @default.
- W2980778868 startingPage "1448" @default.
- W2980778868 abstract "Predicting what items a user will consume in the next time (i.e., next-item recommendation) is a crucial task for recommender systems. While the factorization method is a popular choice in recommendation, several recent efforts have shown that the inner product does not satisfy the triangle inequality, which may hurt the model's generalization ability. TransRec is a promising method to overcome this issue, which learns a distance metric to predict the strength of user-item interactions. Nevertheless, such method only uses the latest consumed item to model a user's short-term preference, which is insufficient for modeling fidelity. In this article, we propose a simple yet effective method named attentive translation model, to explicitly exploit high-order sequential information for next-item recommendation. Specifically, we construct a user-specific translation vector by accounting for multiple recent items, which encode more information about a user's short-term preference than the latest item. To aggregate multiple items into one representation, we devise a position-aware attention mechanism, learning different weights on items at different orders in a personalized way. Extensive experiments on four real-world datasets show that our method significantly outperforms several state-of-the-art methods." @default.
- W2980778868 created "2019-10-25" @default.
- W2980778868 creator A5005167596 @default.
- W2980778868 creator A5009747669 @default.
- W2980778868 creator A5038668215 @default.
- W2980778868 creator A5045940041 @default.
- W2980778868 creator A5053537544 @default.
- W2980778868 date "2020-03-01" @default.
- W2980778868 modified "2023-10-17" @default.
- W2980778868 title "ATM: An Attentive Translation Model for Next-Item Recommendation" @default.
- W2980778868 cites W1492095519 @default.
- W2980778868 cites W1801721664 @default.
- W2980778868 cites W1991055526 @default.
- W2980778868 cites W1994389483 @default.
- W2980778868 cites W2010416066 @default.
- W2980778868 cites W2066611560 @default.
- W2980778868 cites W2080320419 @default.
- W2980778868 cites W2101409192 @default.
- W2980778868 cites W2108920354 @default.
- W2980778868 cites W2119523409 @default.
- W2980778868 cites W2171279286 @default.
- W2980778868 cites W2171960770 @default.
- W2980778868 cites W2278138779 @default.
- W2980778868 cites W2340502990 @default.
- W2980778868 cites W2474909202 @default.
- W2980778868 cites W2550553598 @default.
- W2980778868 cites W2565948352 @default.
- W2980778868 cites W2583674722 @default.
- W2980778868 cites W2597121862 @default.
- W2980778868 cites W2604433096 @default.
- W2980778868 cites W2605350416 @default.
- W2980778868 cites W2614794251 @default.
- W2980778868 cites W2626454364 @default.
- W2980778868 cites W2734755249 @default.
- W2980778868 cites W2741249238 @default.
- W2980778868 cites W2745193675 @default.
- W2980778868 cites W2759136286 @default.
- W2980778868 cites W2783272285 @default.
- W2980778868 cites W2798538558 @default.
- W2980778868 cites W2798868970 @default.
- W2980778868 cites W2802187397 @default.
- W2980778868 cites W2808446163 @default.
- W2980778868 cites W2809112621 @default.
- W2980778868 cites W2884657211 @default.
- W2980778868 cites W2888192920 @default.
- W2980778868 cites W2892821876 @default.
- W2980778868 cites W2893346805 @default.
- W2980778868 cites W2903749028 @default.
- W2980778868 cites W2905305843 @default.
- W2980778868 cites W2905373637 @default.
- W2980778868 cites W2906684937 @default.
- W2980778868 cites W2910376060 @default.
- W2980778868 cites W2913189099 @default.
- W2980778868 cites W2914041468 @default.
- W2980778868 cites W2922461691 @default.
- W2980778868 cites W2946759045 @default.
- W2980778868 cites W2962712142 @default.
- W2980778868 cites W2964044287 @default.
- W2980778868 cites W2964052347 @default.
- W2980778868 cites W2964169350 @default.
- W2980778868 cites W2964296635 @default.
- W2980778868 cites W2965727822 @default.
- W2980778868 cites W2989395196 @default.
- W2980778868 cites W3100591234 @default.
- W2980778868 cites W4288083766 @default.
- W2980778868 cites W4289751797 @default.
- W2980778868 cites W4301312111 @default.
- W2980778868 doi "https://doi.org/10.1109/tii.2019.2947174" @default.
- W2980778868 hasPublicationYear "2020" @default.
- W2980778868 type Work @default.
- W2980778868 sameAs 2980778868 @default.
- W2980778868 citedByCount "21" @default.
- W2980778868 countsByYear W29807788682020 @default.
- W2980778868 countsByYear W29807788682021 @default.
- W2980778868 countsByYear W29807788682022 @default.
- W2980778868 countsByYear W29807788682023 @default.
- W2980778868 crossrefType "journal-article" @default.
- W2980778868 hasAuthorship W2980778868A5005167596 @default.
- W2980778868 hasAuthorship W2980778868A5009747669 @default.
- W2980778868 hasAuthorship W2980778868A5038668215 @default.
- W2980778868 hasAuthorship W2980778868A5045940041 @default.
- W2980778868 hasAuthorship W2980778868A5053537544 @default.
- W2980778868 hasConcept C105795698 @default.
- W2980778868 hasConcept C119857082 @default.
- W2980778868 hasConcept C134306372 @default.
- W2980778868 hasConcept C154945302 @default.
- W2980778868 hasConcept C159985019 @default.
- W2980778868 hasConcept C162324750 @default.
- W2980778868 hasConcept C165696696 @default.
- W2980778868 hasConcept C176217482 @default.
- W2980778868 hasConcept C177148314 @default.
- W2980778868 hasConcept C181204326 @default.
- W2980778868 hasConcept C187736073 @default.
- W2980778868 hasConcept C192562407 @default.
- W2980778868 hasConcept C199360897 @default.
- W2980778868 hasConcept C21547014 @default.
- W2980778868 hasConcept C23123220 @default.
- W2980778868 hasConcept C2524010 @default.