Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980779870> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2980779870 endingPage "105793" @default.
- W2980779870 startingPage "105793" @default.
- W2980779870 abstract "The increasing demand for cost-efficient biodiversity data at large spatiotemporal scales has led to an increase in the collection of large ecoacoustic datasets. Whilst the ease of collection and storage of audio data has rapidly increased and costs fallen, methods for robust analysis of the data have not developed so quickly. Identification and classification of audio signals to species level is extremely desirable, but reliability can be highly affected by non-target noise, especially rainfall. Despite this demand, there are few easily applicable pre-processing methods available for rainfall detection for conservation practitioners and ecologists. Here, we use threshold values of two simple measures, Power Spectrum Density (amplitude) and Signal-to-Noise Ratio at two frequency bands, to differentiate between the presence and absence of heavy rainfall. We assess the effect of using different threshold values on Accuracy and Specificity. We apply the method to four datasets from both tropical and temperate regions, and find that it has up to 99% accuracy on tropical datasets (e.g. from the Brazilian Amazon), but performs less well in temperate environments. This is likely due to the intensity of rainfall in tropical forests and its falling on dense, broadleaf vegetation amplifying the sound. We show that by choosing between different threshold values, informed trade-offs can be made between Accuracy and Specificity, thus allowing the exclusion of large amounts of audio data containing rainfall in all locations without the loss of data not containing rain. We assess the impact of using different sample sizes of audio data to set threshold values, and find that 200 15 s audio files represents an optimal trade-off between effort, accuracy and specificity in most scenarios. This methodology and accompanying R package ‘hardRain’ is the first automated rainfall detection tool for pre-processing large acoustic datasets without the need for any additional rain gauge data." @default.
- W2980779870 created "2019-10-25" @default.
- W2980779870 creator A5016040385 @default.
- W2980779870 creator A5028273107 @default.
- W2980779870 creator A5035295352 @default.
- W2980779870 creator A5040268982 @default.
- W2980779870 creator A5090397074 @default.
- W2980779870 date "2020-02-01" @default.
- W2980779870 modified "2023-10-17" @default.
- W2980779870 title "hardRain: An R package for quick, automated rainfall detection in ecoacoustic datasets using a threshold-based approach" @default.
- W2980779870 cites W2028614599 @default.
- W2980779870 cites W2084150578 @default.
- W2980779870 cites W2099540835 @default.
- W2980779870 cites W2115268776 @default.
- W2980779870 cites W2119525517 @default.
- W2980779870 cites W2169969573 @default.
- W2980779870 cites W2186659481 @default.
- W2980779870 cites W2327432707 @default.
- W2980779870 cites W2518102674 @default.
- W2980779870 cites W2562493431 @default.
- W2980779870 cites W2740570950 @default.
- W2980779870 cites W2770342834 @default.
- W2980779870 cites W2772345051 @default.
- W2980779870 cites W2784076614 @default.
- W2980779870 cites W2884483433 @default.
- W2980779870 cites W2907590931 @default.
- W2980779870 cites W2908507715 @default.
- W2980779870 cites W2912165115 @default.
- W2980779870 cites W2963380161 @default.
- W2980779870 doi "https://doi.org/10.1016/j.ecolind.2019.105793" @default.
- W2980779870 hasPublicationYear "2020" @default.
- W2980779870 type Work @default.
- W2980779870 sameAs 2980779870 @default.
- W2980779870 citedByCount "21" @default.
- W2980779870 countsByYear W29807798702020 @default.
- W2980779870 countsByYear W29807798702021 @default.
- W2980779870 countsByYear W29807798702022 @default.
- W2980779870 countsByYear W29807798702023 @default.
- W2980779870 crossrefType "journal-article" @default.
- W2980779870 hasAuthorship W2980779870A5016040385 @default.
- W2980779870 hasAuthorship W2980779870A5028273107 @default.
- W2980779870 hasAuthorship W2980779870A5035295352 @default.
- W2980779870 hasAuthorship W2980779870A5040268982 @default.
- W2980779870 hasAuthorship W2980779870A5090397074 @default.
- W2980779870 hasBestOaLocation W29807798702 @default.
- W2980779870 hasConcept C205649164 @default.
- W2980779870 hasConcept C2984074130 @default.
- W2980779870 hasConcept C39432304 @default.
- W2980779870 hasConcept C41008148 @default.
- W2980779870 hasConcept C459310 @default.
- W2980779870 hasConcept C62649853 @default.
- W2980779870 hasConceptScore W2980779870C205649164 @default.
- W2980779870 hasConceptScore W2980779870C2984074130 @default.
- W2980779870 hasConceptScore W2980779870C39432304 @default.
- W2980779870 hasConceptScore W2980779870C41008148 @default.
- W2980779870 hasConceptScore W2980779870C459310 @default.
- W2980779870 hasConceptScore W2980779870C62649853 @default.
- W2980779870 hasFunder F4320320245 @default.
- W2980779870 hasFunder F4320321091 @default.
- W2980779870 hasFunder F4320322025 @default.
- W2980779870 hasLocation W29807798701 @default.
- W2980779870 hasLocation W29807798702 @default.
- W2980779870 hasLocation W29807798703 @default.
- W2980779870 hasOpenAccess W2980779870 @default.
- W2980779870 hasPrimaryLocation W29807798701 @default.
- W2980779870 hasRelatedWork W1964975231 @default.
- W2980779870 hasRelatedWork W1975591846 @default.
- W2980779870 hasRelatedWork W2022420161 @default.
- W2980779870 hasRelatedWork W2035062134 @default.
- W2980779870 hasRelatedWork W2037995797 @default.
- W2980779870 hasRelatedWork W2116890486 @default.
- W2980779870 hasRelatedWork W2126095845 @default.
- W2980779870 hasRelatedWork W2276146256 @default.
- W2980779870 hasRelatedWork W2899084033 @default.
- W2980779870 hasRelatedWork W2936499484 @default.
- W2980779870 hasVolume "109" @default.
- W2980779870 isParatext "false" @default.
- W2980779870 isRetracted "false" @default.
- W2980779870 magId "2980779870" @default.
- W2980779870 workType "article" @default.