Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980793487> ?p ?o ?g. }
- W2980793487 endingPage "S22" @default.
- W2980793487 startingPage "S22" @default.
- W2980793487 abstract "BackgroundCommon diseases are not satisfactorily managed under the current health-care system because of inadequate medical resources and limited accessibility. We aimed to establish and validate a universal artificial intelligence (AI) platform for collaborative management of cataracts involving multilevel clinical scenarios, and explored an AI-based medical referral pattern to improve collaborative efficiency and resource coverage.MethodsThe training and validation datasets were derived from the Chinese Medical Alliance for Artificial Intelligence, covering multilevel health-care facilities and capture modes. The datasets were labeled using a three-step strategy: capture mode recognition (modes: mydriatic-diffuse, mydriatic-slit lamp, non-mydriatic-diffuse, and nonmydriatic-slit lamp); cataract diagnosis as a normal lens, cataract, or a postoperative eye; and detection of referable cataracts with respect to cause and severity. Area under curve [AUC] was measured at each stage. We also integrated the above cataract AI agent with a real-world multilevel referral pattern involving self-monitoring at home, primary health care, and specialised hospital services. The diagnostic accuracy, treatment referral, and ophthalmologist-to-population service ratio were used to evaluate the performance and efficacy of the system.FindingsThe universal AI platform and multilevel collaborative pattern showed robust diagnostic performance in three-step tasks: capture mode recognition (AUC 99·28–99·71% for the four different capture modes), cataract diagnosis (AUC for mydriatic-slit lamp mode 99·82% [95%CI 98·93–100] for normal lens vs 99·96% [99·90–100] for cataract vs 99·93% [99·78–100] for postoperative eye, and AUCs >99% for other capture modes), and detection of referable cataracts (AUCs >91% in all tests). In the real-world tertiary referral pattern, the agent suggested 30·3% of people be referred to treatment, substantially increasing the ophthalmologist-to-population service ratio by 10·2-times compared with the traditional pattern.InterpretationThe universal AI platform and multilevel collaborative pattern showed robust diagnostic performance and effective service for cataracts. The context of our AI-based medical referral pattern will be extended to other common disease conditions and resource-intensive situations.FundingNational Key Research and Development Program, National Natural Science Foundation of China, Science Foundation of China for Excellent Young Scientists, Guangdong Provincial Natural Science Foundation, Guangdong Province Universities and Colleges Youth Pearl River Scholar Funding Scheme, Science and Technology Planning Projects of Guangdong Province, Clinical Research and Translational Medical Center of Pediatric Cataract in Guangzhou City, Outstanding Young Teacher Cultivation Projects in Guangdong Province, Fundamental Research Funds for the Central Universities." @default.
- W2980793487 created "2019-10-25" @default.
- W2980793487 creator A5002101897 @default.
- W2980793487 creator A5003053955 @default.
- W2980793487 creator A5003185739 @default.
- W2980793487 creator A5003459470 @default.
- W2980793487 creator A5003850660 @default.
- W2980793487 creator A5006734576 @default.
- W2980793487 creator A5008924106 @default.
- W2980793487 creator A5009590736 @default.
- W2980793487 creator A5011575206 @default.
- W2980793487 creator A5011662006 @default.
- W2980793487 creator A5011917038 @default.
- W2980793487 creator A5014012741 @default.
- W2980793487 creator A5014483604 @default.
- W2980793487 creator A5018950449 @default.
- W2980793487 creator A5024488655 @default.
- W2980793487 creator A5025505139 @default.
- W2980793487 creator A5025607157 @default.
- W2980793487 creator A5026304769 @default.
- W2980793487 creator A5030671553 @default.
- W2980793487 creator A5033695487 @default.
- W2980793487 creator A5039743074 @default.
- W2980793487 creator A5049088437 @default.
- W2980793487 creator A5049594879 @default.
- W2980793487 creator A5055092097 @default.
- W2980793487 creator A5057236809 @default.
- W2980793487 creator A5057585686 @default.
- W2980793487 creator A5058264621 @default.
- W2980793487 creator A5058413717 @default.
- W2980793487 creator A5064619395 @default.
- W2980793487 creator A5066696994 @default.
- W2980793487 creator A5069084441 @default.
- W2980793487 creator A5071282511 @default.
- W2980793487 creator A5081265423 @default.
- W2980793487 creator A5085130854 @default.
- W2980793487 creator A5085449604 @default.
- W2980793487 creator A5088402297 @default.
- W2980793487 date "2019-10-01" @default.
- W2980793487 modified "2023-10-17" @default.
- W2980793487 title "A universal artificial intelligence platform for collaborative management of cataracts" @default.
- W2980793487 doi "https://doi.org/10.1016/s0140-6736(19)32358-x" @default.
- W2980793487 hasPublicationYear "2019" @default.
- W2980793487 type Work @default.
- W2980793487 sameAs 2980793487 @default.
- W2980793487 citedByCount "0" @default.
- W2980793487 crossrefType "journal-article" @default.
- W2980793487 hasAuthorship W2980793487A5002101897 @default.
- W2980793487 hasAuthorship W2980793487A5003053955 @default.
- W2980793487 hasAuthorship W2980793487A5003185739 @default.
- W2980793487 hasAuthorship W2980793487A5003459470 @default.
- W2980793487 hasAuthorship W2980793487A5003850660 @default.
- W2980793487 hasAuthorship W2980793487A5006734576 @default.
- W2980793487 hasAuthorship W2980793487A5008924106 @default.
- W2980793487 hasAuthorship W2980793487A5009590736 @default.
- W2980793487 hasAuthorship W2980793487A5011575206 @default.
- W2980793487 hasAuthorship W2980793487A5011662006 @default.
- W2980793487 hasAuthorship W2980793487A5011917038 @default.
- W2980793487 hasAuthorship W2980793487A5014012741 @default.
- W2980793487 hasAuthorship W2980793487A5014483604 @default.
- W2980793487 hasAuthorship W2980793487A5018950449 @default.
- W2980793487 hasAuthorship W2980793487A5024488655 @default.
- W2980793487 hasAuthorship W2980793487A5025505139 @default.
- W2980793487 hasAuthorship W2980793487A5025607157 @default.
- W2980793487 hasAuthorship W2980793487A5026304769 @default.
- W2980793487 hasAuthorship W2980793487A5030671553 @default.
- W2980793487 hasAuthorship W2980793487A5033695487 @default.
- W2980793487 hasAuthorship W2980793487A5039743074 @default.
- W2980793487 hasAuthorship W2980793487A5049088437 @default.
- W2980793487 hasAuthorship W2980793487A5049594879 @default.
- W2980793487 hasAuthorship W2980793487A5055092097 @default.
- W2980793487 hasAuthorship W2980793487A5057236809 @default.
- W2980793487 hasAuthorship W2980793487A5057585686 @default.
- W2980793487 hasAuthorship W2980793487A5058264621 @default.
- W2980793487 hasAuthorship W2980793487A5058413717 @default.
- W2980793487 hasAuthorship W2980793487A5064619395 @default.
- W2980793487 hasAuthorship W2980793487A5066696994 @default.
- W2980793487 hasAuthorship W2980793487A5069084441 @default.
- W2980793487 hasAuthorship W2980793487A5071282511 @default.
- W2980793487 hasAuthorship W2980793487A5081265423 @default.
- W2980793487 hasAuthorship W2980793487A5085130854 @default.
- W2980793487 hasAuthorship W2980793487A5085449604 @default.
- W2980793487 hasAuthorship W2980793487A5088402297 @default.
- W2980793487 hasBestOaLocation W29807934871 @default.
- W2980793487 hasConcept C118487528 @default.
- W2980793487 hasConcept C119767625 @default.
- W2980793487 hasConcept C119857082 @default.
- W2980793487 hasConcept C154945302 @default.
- W2980793487 hasConcept C160735492 @default.
- W2980793487 hasConcept C162324750 @default.
- W2980793487 hasConcept C2776135927 @default.
- W2980793487 hasConcept C2777120189 @default.
- W2980793487 hasConcept C2780225610 @default.
- W2980793487 hasConcept C41008148 @default.
- W2980793487 hasConcept C50522688 @default.
- W2980793487 hasConcept C512399662 @default.
- W2980793487 hasConcept C545542383 @default.
- W2980793487 hasConcept C71924100 @default.