Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980815094> ?p ?o ?g. }
- W2980815094 endingPage "12313" @default.
- W2980815094 startingPage "12301" @default.
- W2980815094 abstract "Short-term traffic prediction (STTP) is one of the most critical capabilities in Intelligent Transportation Systems (ITS), which can be used to support driving decisions, alleviate traffic congestion and improve transportation efficiency. However, STTP of large-scale road networks remains challenging due to the difficulties of effectively modeling the diverse traffic patterns by high-dimensional time series. Therefore, this paper proposes a framework that involves a deep clustering method for STTP in large-scale road networks. The deep clustering method is employed to supervise the representation learning in a visualized way from the large unlabeled dataset. More specifically, to fully exploit the traffic periodicity, the raw series is first divided into a number of sub-series for triplet generation. The convolutional neural networks (CNNs) with triplet loss are utilized to extract the features of shape by transforming the series into visual images. The shape-based representations are then used to cluster road segments into groups. Thereafter, a model sharing strategy is further proposed to build recurrent NNs-based predictions through group-based models (GBMs). GBM is built for a type of traffic patterns, instead of one road segment exclusively or all road segments uniformly. Our framework can not only significantly reduce the number of prediction models, but also improve their generalization by virtue of being trained on more diverse examples. Furthermore, the proposed framework over a selected road network in Beijing is evaluated. Experiment results show that the deep clustering method can effectively cluster the road segments and GBM can achieve comparable prediction accuracy against the IBM with less number of prediction models." @default.
- W2980815094 created "2019-10-25" @default.
- W2980815094 creator A5033202592 @default.
- W2980815094 creator A5033670308 @default.
- W2980815094 creator A5065443071 @default.
- W2980815094 creator A5067368904 @default.
- W2980815094 creator A5076723836 @default.
- W2980815094 date "2019-12-01" @default.
- W2980815094 modified "2023-10-16" @default.
- W2980815094 title "Short-Term Traffic Prediction Based on DeepCluster in Large-Scale Road Networks" @default.
- W2980815094 cites W1499049447 @default.
- W2980815094 cites W1841544193 @default.
- W2980815094 cites W1894414046 @default.
- W2980815094 cites W1975973780 @default.
- W2980815094 cites W1978702946 @default.
- W2980815094 cites W1984187922 @default.
- W2980815094 cites W1987971958 @default.
- W2980815094 cites W1988115241 @default.
- W2980815094 cites W1990368529 @default.
- W2980815094 cites W1991770012 @default.
- W2980815094 cites W2029767187 @default.
- W2980815094 cites W2040297119 @default.
- W2980815094 cites W2042210493 @default.
- W2980815094 cites W2049500727 @default.
- W2980815094 cites W2051224630 @default.
- W2980815094 cites W2064675550 @default.
- W2980815094 cites W2076184482 @default.
- W2980815094 cites W2079769575 @default.
- W2980815094 cites W2085487226 @default.
- W2980815094 cites W2087544630 @default.
- W2980815094 cites W2092923999 @default.
- W2980815094 cites W2098105074 @default.
- W2980815094 cites W2111991989 @default.
- W2980815094 cites W2112796928 @default.
- W2980815094 cites W2148039410 @default.
- W2980815094 cites W2163336863 @default.
- W2980815094 cites W2166064672 @default.
- W2980815094 cites W2167688066 @default.
- W2980815094 cites W2251410829 @default.
- W2980815094 cites W2277710627 @default.
- W2980815094 cites W2460404912 @default.
- W2980815094 cites W2566425973 @default.
- W2980815094 cites W2573587735 @default.
- W2980815094 cites W2579495707 @default.
- W2980815094 cites W2593182953 @default.
- W2980815094 cites W2617931713 @default.
- W2980815094 cites W2620303912 @default.
- W2980815094 cites W2777922598 @default.
- W2980815094 cites W2778363563 @default.
- W2980815094 cites W2789788750 @default.
- W2980815094 cites W2790496887 @default.
- W2980815094 cites W2799109291 @default.
- W2980815094 cites W2803418695 @default.
- W2980815094 cites W2919115771 @default.
- W2980815094 cites W2963420343 @default.
- W2980815094 cites W3099206234 @default.
- W2980815094 cites W4238284510 @default.
- W2980815094 cites W82771173 @default.
- W2980815094 doi "https://doi.org/10.1109/tvt.2019.2947080" @default.
- W2980815094 hasPublicationYear "2019" @default.
- W2980815094 type Work @default.
- W2980815094 sameAs 2980815094 @default.
- W2980815094 citedByCount "23" @default.
- W2980815094 countsByYear W29808150942020 @default.
- W2980815094 countsByYear W29808150942021 @default.
- W2980815094 countsByYear W29808150942022 @default.
- W2980815094 countsByYear W29808150942023 @default.
- W2980815094 crossrefType "journal-article" @default.
- W2980815094 hasAuthorship W2980815094A5033202592 @default.
- W2980815094 hasAuthorship W2980815094A5033670308 @default.
- W2980815094 hasAuthorship W2980815094A5065443071 @default.
- W2980815094 hasAuthorship W2980815094A5067368904 @default.
- W2980815094 hasAuthorship W2980815094A5076723836 @default.
- W2980815094 hasConcept C108583219 @default.
- W2980815094 hasConcept C119857082 @default.
- W2980815094 hasConcept C121332964 @default.
- W2980815094 hasConcept C124101348 @default.
- W2980815094 hasConcept C127413603 @default.
- W2980815094 hasConcept C134306372 @default.
- W2980815094 hasConcept C153180895 @default.
- W2980815094 hasConcept C154945302 @default.
- W2980815094 hasConcept C165696696 @default.
- W2980815094 hasConcept C177148314 @default.
- W2980815094 hasConcept C17744445 @default.
- W2980815094 hasConcept C191935318 @default.
- W2980815094 hasConcept C199539241 @default.
- W2980815094 hasConcept C22212356 @default.
- W2980815094 hasConcept C2778304055 @default.
- W2980815094 hasConcept C2778755073 @default.
- W2980815094 hasConcept C33923547 @default.
- W2980815094 hasConcept C38652104 @default.
- W2980815094 hasConcept C41008148 @default.
- W2980815094 hasConcept C47796450 @default.
- W2980815094 hasConcept C50644808 @default.
- W2980815094 hasConcept C61797465 @default.
- W2980815094 hasConcept C62520636 @default.
- W2980815094 hasConcept C73555534 @default.
- W2980815094 hasConcept C81363708 @default.