Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980821580> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2980821580 abstract "Spiders are the most abundant predatory natural enemies in terrestrial ecosystems. As an important natural enemy of many agricultural and forestry pests, spiders play a very significant role in the biological control of pests. In order to make rational use of spider resources, it is necessary to observe and study the population characteristics of it. Direct observation method is time-consuming and laborious. If we can take the videos or images of spiders by surveillance cameras, and then use computer vision technology to identify and classify automatically, the efficiency of image data acquisition and pest biological control will be greatly improved. Motivated by this, we studied the classification and recognition of spider images in natural background obtained by common surveillance equipment. However, the images of some species of spiders in natural background are difficult to be collected, and the inadequate clarity and contrast of the subjects in images will also affect the recognition accuracy. So, firstly, histogram equalization was used to enhance the contrast of the image; the dataset of spider images was expanded by image rotation, reflection, flipping, zooming, translating and increasing the pixel noise appropriately, and so on; the contour detection was carried out for assistant recognition. Secondly, taken the deep convolutional neural networks (CNN) as our basic framework, two automatic recognition models of spider images, that is the 8-layer deep CNN model and the transfer learning model based on Inception-v3, were constructed. After that, the two models were trained, evaluated and compared under a dataset with 4478 pre-processed images. The experimental results show that the first model has a limited effect on image feature extraction of spiders in natural background, while the second model based on transfer learning can achieve better recognition accuracy when combining image contour features as an auxiliary input. In the second model, the accuracy of training set and testing set can reach more than 90%, and the recognition speed can be controlled within 1 second, which meets the practical requirements of automatic classification and recognition of spider images in natural background." @default.
- W2980821580 created "2019-10-25" @default.
- W2980821580 creator A5052636016 @default.
- W2980821580 creator A5068295686 @default.
- W2980821580 creator A5079912538 @default.
- W2980821580 creator A5084611031 @default.
- W2980821580 creator A5086868372 @default.
- W2980821580 creator A5087750845 @default.
- W2980821580 date "2019-07-01" @default.
- W2980821580 modified "2023-10-18" @default.
- W2980821580 title "Automatic Classification of Spider Images in Natural Background" @default.
- W2980821580 cites W1973489509 @default.
- W2980821580 cites W2058610492 @default.
- W2980821580 cites W2085253271 @default.
- W2980821580 cites W2092239729 @default.
- W2980821580 cites W2136922672 @default.
- W2980821580 cites W2183341477 @default.
- W2980821580 cites W2194775991 @default.
- W2980821580 cites W2334148894 @default.
- W2980821580 cites W2334627868 @default.
- W2980821580 cites W2564288310 @default.
- W2980821580 cites W2791568081 @default.
- W2980821580 cites W2894293569 @default.
- W2980821580 cites W333951924 @default.
- W2980821580 doi "https://doi.org/10.1109/siprocess.2019.8868601" @default.
- W2980821580 hasPublicationYear "2019" @default.
- W2980821580 type Work @default.
- W2980821580 sameAs 2980821580 @default.
- W2980821580 citedByCount "1" @default.
- W2980821580 countsByYear W29808215802023 @default.
- W2980821580 crossrefType "proceedings-article" @default.
- W2980821580 hasAuthorship W2980821580A5052636016 @default.
- W2980821580 hasAuthorship W2980821580A5068295686 @default.
- W2980821580 hasAuthorship W2980821580A5079912538 @default.
- W2980821580 hasAuthorship W2980821580A5084611031 @default.
- W2980821580 hasAuthorship W2980821580A5086868372 @default.
- W2980821580 hasAuthorship W2980821580A5087750845 @default.
- W2980821580 hasConcept C108583219 @default.
- W2980821580 hasConcept C119857082 @default.
- W2980821580 hasConcept C144024400 @default.
- W2980821580 hasConcept C149923435 @default.
- W2980821580 hasConcept C153180895 @default.
- W2980821580 hasConcept C154945302 @default.
- W2980821580 hasConcept C18903297 @default.
- W2980821580 hasConcept C2780181586 @default.
- W2980821580 hasConcept C2908647359 @default.
- W2980821580 hasConcept C31972630 @default.
- W2980821580 hasConcept C41008148 @default.
- W2980821580 hasConcept C52622490 @default.
- W2980821580 hasConcept C81363708 @default.
- W2980821580 hasConcept C86803240 @default.
- W2980821580 hasConceptScore W2980821580C108583219 @default.
- W2980821580 hasConceptScore W2980821580C119857082 @default.
- W2980821580 hasConceptScore W2980821580C144024400 @default.
- W2980821580 hasConceptScore W2980821580C149923435 @default.
- W2980821580 hasConceptScore W2980821580C153180895 @default.
- W2980821580 hasConceptScore W2980821580C154945302 @default.
- W2980821580 hasConceptScore W2980821580C18903297 @default.
- W2980821580 hasConceptScore W2980821580C2780181586 @default.
- W2980821580 hasConceptScore W2980821580C2908647359 @default.
- W2980821580 hasConceptScore W2980821580C31972630 @default.
- W2980821580 hasConceptScore W2980821580C41008148 @default.
- W2980821580 hasConceptScore W2980821580C52622490 @default.
- W2980821580 hasConceptScore W2980821580C81363708 @default.
- W2980821580 hasConceptScore W2980821580C86803240 @default.
- W2980821580 hasLocation W29808215801 @default.
- W2980821580 hasOpenAccess W2980821580 @default.
- W2980821580 hasPrimaryLocation W29808215801 @default.
- W2980821580 hasRelatedWork W2059299633 @default.
- W2980821580 hasRelatedWork W2279398222 @default.
- W2980821580 hasRelatedWork W2732542196 @default.
- W2980821580 hasRelatedWork W2738221750 @default.
- W2980821580 hasRelatedWork W2773120646 @default.
- W2980821580 hasRelatedWork W3011074480 @default.
- W2980821580 hasRelatedWork W4299822940 @default.
- W2980821580 hasRelatedWork W4311257506 @default.
- W2980821580 hasRelatedWork W4366492315 @default.
- W2980821580 hasRelatedWork W564581980 @default.
- W2980821580 isParatext "false" @default.
- W2980821580 isRetracted "false" @default.
- W2980821580 magId "2980821580" @default.
- W2980821580 workType "article" @default.