Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980825080> ?p ?o ?g. }
- W2980825080 endingPage "105138" @default.
- W2980825080 startingPage "105138" @default.
- W2980825080 abstract "Myocardial infarction (MI) is one of the most threatening cardiovascular diseases for human beings, which can be diagnosed by electrocardiogram (ECG). Automated detection methods based on ECG focus on extracting handcrafted features. However, limited by the performance of traditional methods and individual differences between patients, it's difficult for predesigned features to detect MI with high performance. The paper presents a novel method to detect and locate MI combining a multi-lead residual neural network (ML–ResNet) structure with three residual blocks and feature fusion via 12 leads ECG records. Specifically, single lead feature branch network is trained to automatically learn the representative features of different levels between different layers, which exploits local characteristics of ECG to characterize the spatial information representation. Then all the lead features are fused together as global features. To evaluate the generalization of proposed method and clinical utility, two schemes including the intra-patient scheme and inter-patient scheme are all employed. Experimental results based on PTB (Physikalisch-Technische Bundesanstalt) database shows that our model achieves superior results with the accuracy of 95.49%, the sensitivity of 94.85%, the specificity of 97.37%, and the F1 score of 96.92% for MI detection under the inter-patient scheme compared to the state-of-the-art. By contrast, the accuracy is 99.92% and the F1 score is 99.94% based on 5-fold cross validation under the intra-patient scheme. As for five types of MI location, the proposed method also yields an average accuracy of 99.72% and F1 of 99.67% in the intra-patient scheme. The proposed method for MI detection and location has achieved superior results compared to other detection methods. However, further promotion of the performance based on MI location for the inter-patient scheme still depends significantly on the mass data and the novel model which reflects spatial location information of different leads subtly." @default.
- W2980825080 created "2019-10-25" @default.
- W2980825080 creator A5023444249 @default.
- W2980825080 creator A5080094685 @default.
- W2980825080 date "2020-03-01" @default.
- W2980825080 modified "2023-10-17" @default.
- W2980825080 title "ML–ResNet: A novel network to detect and locate myocardial infarction using 12 leads ECG" @default.
- W2980825080 cites W2022691337 @default.
- W2980825080 cites W2041110545 @default.
- W2980825080 cites W2047181473 @default.
- W2980825080 cites W2063923412 @default.
- W2980825080 cites W2077430201 @default.
- W2980825080 cites W2091076299 @default.
- W2980825080 cites W2158192676 @default.
- W2980825080 cites W2162273778 @default.
- W2980825080 cites W2162800060 @default.
- W2980825080 cites W2475310753 @default.
- W2980825080 cites W2495557304 @default.
- W2980825080 cites W2512426799 @default.
- W2980825080 cites W2527796983 @default.
- W2980825080 cites W2610332124 @default.
- W2980825080 cites W2702116941 @default.
- W2980825080 cites W2734657638 @default.
- W2980825080 cites W2754331792 @default.
- W2980825080 cites W2755499309 @default.
- W2980825080 cites W2767583913 @default.
- W2980825080 cites W2775521641 @default.
- W2980825080 cites W2796148034 @default.
- W2980825080 cites W2797694788 @default.
- W2980825080 cites W2804642894 @default.
- W2980825080 cites W2884483862 @default.
- W2980825080 cites W2888543854 @default.
- W2980825080 cites W2888673273 @default.
- W2980825080 cites W2902644322 @default.
- W2980825080 cites W2913789442 @default.
- W2980825080 cites W2914231497 @default.
- W2980825080 cites W2919115771 @default.
- W2980825080 cites W2924456201 @default.
- W2980825080 doi "https://doi.org/10.1016/j.cmpb.2019.105138" @default.
- W2980825080 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31669959" @default.
- W2980825080 hasPublicationYear "2020" @default.
- W2980825080 type Work @default.
- W2980825080 sameAs 2980825080 @default.
- W2980825080 citedByCount "87" @default.
- W2980825080 countsByYear W29808250802019 @default.
- W2980825080 countsByYear W29808250802020 @default.
- W2980825080 countsByYear W29808250802021 @default.
- W2980825080 countsByYear W29808250802022 @default.
- W2980825080 countsByYear W29808250802023 @default.
- W2980825080 crossrefType "journal-article" @default.
- W2980825080 hasAuthorship W2980825080A5023444249 @default.
- W2980825080 hasAuthorship W2980825080A5080094685 @default.
- W2980825080 hasConcept C11413529 @default.
- W2980825080 hasConcept C120665830 @default.
- W2980825080 hasConcept C121332964 @default.
- W2980825080 hasConcept C124101348 @default.
- W2980825080 hasConcept C134306372 @default.
- W2980825080 hasConcept C138885662 @default.
- W2980825080 hasConcept C153180895 @default.
- W2980825080 hasConcept C154945302 @default.
- W2980825080 hasConcept C155512373 @default.
- W2980825080 hasConcept C164705383 @default.
- W2980825080 hasConcept C177148314 @default.
- W2980825080 hasConcept C192209626 @default.
- W2980825080 hasConcept C2776401178 @default.
- W2980825080 hasConcept C2944601119 @default.
- W2980825080 hasConcept C33923547 @default.
- W2980825080 hasConcept C41008148 @default.
- W2980825080 hasConcept C41895202 @default.
- W2980825080 hasConcept C500558357 @default.
- W2980825080 hasConcept C50644808 @default.
- W2980825080 hasConcept C71924100 @default.
- W2980825080 hasConceptScore W2980825080C11413529 @default.
- W2980825080 hasConceptScore W2980825080C120665830 @default.
- W2980825080 hasConceptScore W2980825080C121332964 @default.
- W2980825080 hasConceptScore W2980825080C124101348 @default.
- W2980825080 hasConceptScore W2980825080C134306372 @default.
- W2980825080 hasConceptScore W2980825080C138885662 @default.
- W2980825080 hasConceptScore W2980825080C153180895 @default.
- W2980825080 hasConceptScore W2980825080C154945302 @default.
- W2980825080 hasConceptScore W2980825080C155512373 @default.
- W2980825080 hasConceptScore W2980825080C164705383 @default.
- W2980825080 hasConceptScore W2980825080C177148314 @default.
- W2980825080 hasConceptScore W2980825080C192209626 @default.
- W2980825080 hasConceptScore W2980825080C2776401178 @default.
- W2980825080 hasConceptScore W2980825080C2944601119 @default.
- W2980825080 hasConceptScore W2980825080C33923547 @default.
- W2980825080 hasConceptScore W2980825080C41008148 @default.
- W2980825080 hasConceptScore W2980825080C41895202 @default.
- W2980825080 hasConceptScore W2980825080C500558357 @default.
- W2980825080 hasConceptScore W2980825080C50644808 @default.
- W2980825080 hasConceptScore W2980825080C71924100 @default.
- W2980825080 hasLocation W29808250801 @default.
- W2980825080 hasOpenAccess W2980825080 @default.
- W2980825080 hasPrimaryLocation W29808250801 @default.
- W2980825080 hasRelatedWork W2382607599 @default.
- W2980825080 hasRelatedWork W2546942002 @default.
- W2980825080 hasRelatedWork W2755231872 @default.