Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980839985> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2980839985 abstract "Spatial particle distribution can be recorded by holography technology and can be constructed from multi-layer hologram. Due to the influence of holographic recording and reconstruction process, each tomography of multi-layer reconstruction from holography also contains noise in addition to containing spatial particle distribution information. How to denoise each tomography is a key problem. The existing methods either have a long operation time or the noise reduction effect is not obvious. In order to solve the above problems, we proposed a denoising method based on deep learning in this paper. A deep neural network is built to train and test with simulated spatial particle tomography on multi-layer holography reconstruction. According to the simulation results, the method proposed in this paper is effective in denoising the reconstruction results of spatial particles. The proposed method has the advantages of rapidity and high efficiency." @default.
- W2980839985 created "2019-10-25" @default.
- W2980839985 creator A5000873011 @default.
- W2980839985 creator A5018228131 @default.
- W2980839985 creator A5019607714 @default.
- W2980839985 creator A5056148571 @default.
- W2980839985 date "2019-10-16" @default.
- W2980839985 modified "2023-09-24" @default.
- W2980839985 title "Denoising in spatial particle tomography on multi-layer holography reconstruction by deep learning" @default.
- W2980839985 cites W2028349405 @default.
- W2980839985 cites W2031449207 @default.
- W2980839985 cites W2113945798 @default.
- W2980839985 cites W2136396015 @default.
- W2980839985 cites W2905995769 @default.
- W2980839985 cites W2913539075 @default.
- W2980839985 cites W4238922809 @default.
- W2980839985 doi "https://doi.org/10.1117/12.2541651" @default.
- W2980839985 hasPublicationYear "2019" @default.
- W2980839985 type Work @default.
- W2980839985 sameAs 2980839985 @default.
- W2980839985 citedByCount "0" @default.
- W2980839985 crossrefType "proceedings-article" @default.
- W2980839985 hasAuthorship W2980839985A5000873011 @default.
- W2980839985 hasAuthorship W2980839985A5018228131 @default.
- W2980839985 hasAuthorship W2980839985A5019607714 @default.
- W2980839985 hasAuthorship W2980839985A5056148571 @default.
- W2980839985 hasConcept C111335779 @default.
- W2980839985 hasConcept C115961682 @default.
- W2980839985 hasConcept C120665830 @default.
- W2980839985 hasConcept C121332964 @default.
- W2980839985 hasConcept C141379421 @default.
- W2980839985 hasConcept C154945302 @default.
- W2980839985 hasConcept C159985019 @default.
- W2980839985 hasConcept C163294075 @default.
- W2980839985 hasConcept C163716698 @default.
- W2980839985 hasConcept C187590223 @default.
- W2980839985 hasConcept C192562407 @default.
- W2980839985 hasConcept C2524010 @default.
- W2980839985 hasConcept C2776640645 @default.
- W2980839985 hasConcept C2779227376 @default.
- W2980839985 hasConcept C31972630 @default.
- W2980839985 hasConcept C33923547 @default.
- W2980839985 hasConcept C41008148 @default.
- W2980839985 hasConcept C50644808 @default.
- W2980839985 hasConcept C99498987 @default.
- W2980839985 hasConceptScore W2980839985C111335779 @default.
- W2980839985 hasConceptScore W2980839985C115961682 @default.
- W2980839985 hasConceptScore W2980839985C120665830 @default.
- W2980839985 hasConceptScore W2980839985C121332964 @default.
- W2980839985 hasConceptScore W2980839985C141379421 @default.
- W2980839985 hasConceptScore W2980839985C154945302 @default.
- W2980839985 hasConceptScore W2980839985C159985019 @default.
- W2980839985 hasConceptScore W2980839985C163294075 @default.
- W2980839985 hasConceptScore W2980839985C163716698 @default.
- W2980839985 hasConceptScore W2980839985C187590223 @default.
- W2980839985 hasConceptScore W2980839985C192562407 @default.
- W2980839985 hasConceptScore W2980839985C2524010 @default.
- W2980839985 hasConceptScore W2980839985C2776640645 @default.
- W2980839985 hasConceptScore W2980839985C2779227376 @default.
- W2980839985 hasConceptScore W2980839985C31972630 @default.
- W2980839985 hasConceptScore W2980839985C33923547 @default.
- W2980839985 hasConceptScore W2980839985C41008148 @default.
- W2980839985 hasConceptScore W2980839985C50644808 @default.
- W2980839985 hasConceptScore W2980839985C99498987 @default.
- W2980839985 hasLocation W29808399851 @default.
- W2980839985 hasOpenAccess W2980839985 @default.
- W2980839985 hasPrimaryLocation W29808399851 @default.
- W2980839985 hasRelatedWork W12239746 @default.
- W2980839985 hasRelatedWork W12413966 @default.
- W2980839985 hasRelatedWork W12820343 @default.
- W2980839985 hasRelatedWork W1488941 @default.
- W2980839985 hasRelatedWork W3885281 @default.
- W2980839985 hasRelatedWork W4832536 @default.
- W2980839985 hasRelatedWork W5479987 @default.
- W2980839985 hasRelatedWork W6468916 @default.
- W2980839985 hasRelatedWork W7468064 @default.
- W2980839985 hasRelatedWork W7585393 @default.
- W2980839985 isParatext "false" @default.
- W2980839985 isRetracted "false" @default.
- W2980839985 magId "2980839985" @default.
- W2980839985 workType "article" @default.