Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980895329> ?p ?o ?g. }
- W2980895329 endingPage "100392" @default.
- W2980895329 startingPage "100392" @default.
- W2980895329 abstract "In geostatistics, the spatiotemporal design for data collection is central for accurate prediction and parameter inference. An important class of geostatistical models is log-Gaussian Cox process (LGCP) but there are no formal analyses on spatial or spatiotemporal survey designs for them. In this work, we study traditional balanced and uniform random designs in situations where analyst has prior information on intensity function of LGCP and show that the traditional balanced and random designs are not efficient in such situations. We also propose a new design sampling method, a rejection sampling design, which extends the traditional balanced and random designs by directing survey sites to locations that are a priori expected to provide most information. We compare our proposal to the traditional balanced and uniform random designs using the expected average predictive variance (APV) loss and the expected Kullback–Leibler (KL) divergence between the prior and the posterior for the LGCP intensity function in simulation experiments and in a real world case study. The APV informs about expected accuracy of a survey design in point-wise predictions and the KL-divergence measures the expected gain in information about the joint distribution of the intensity field. The case study concerns planning a survey design for analyzing larval areas of two commercially important fish stocks on Finnish coastal region. Our experiments show that the designs generated by the proposed rejection sampling method clearly outperform the traditional balanced and uniform random survey designs. Moreover, the method is easily applicable to other models in general." @default.
- W2980895329 created "2019-10-25" @default.
- W2980895329 creator A5057385440 @default.
- W2980895329 creator A5077479006 @default.
- W2980895329 date "2020-03-01" @default.
- W2980895329 modified "2023-10-09" @default.
- W2980895329 title "Bayesian model based spatiotemporal survey designs and partially observed log Gaussian Cox process" @default.
- W2980895329 cites W1494196016 @default.
- W2980895329 cites W1506962395 @default.
- W2980895329 cites W1517366800 @default.
- W2980895329 cites W1525815710 @default.
- W2980895329 cites W1724484200 @default.
- W2980895329 cites W1818484123 @default.
- W2980895329 cites W1965069692 @default.
- W2980895329 cites W1981890344 @default.
- W2980895329 cites W1997837167 @default.
- W2980895329 cites W2039036391 @default.
- W2980895329 cites W2040850257 @default.
- W2980895329 cites W2042925520 @default.
- W2980895329 cites W2053934160 @default.
- W2980895329 cites W2066589860 @default.
- W2980895329 cites W2073389045 @default.
- W2980895329 cites W2076580309 @default.
- W2980895329 cites W2080439372 @default.
- W2980895329 cites W2086216148 @default.
- W2980895329 cites W2088046890 @default.
- W2980895329 cites W2097601813 @default.
- W2980895329 cites W2101484286 @default.
- W2980895329 cites W2103549993 @default.
- W2980895329 cites W2106773969 @default.
- W2980895329 cites W2116100710 @default.
- W2980895329 cites W2140305176 @default.
- W2980895329 cites W2147351230 @default.
- W2980895329 cites W2238567616 @default.
- W2980895329 cites W2408339521 @default.
- W2980895329 cites W2520909656 @default.
- W2980895329 cites W2550533731 @default.
- W2980895329 cites W2604592995 @default.
- W2980895329 cites W2715957797 @default.
- W2980895329 cites W2743430388 @default.
- W2980895329 cites W2793864561 @default.
- W2980895329 cites W2804384966 @default.
- W2980895329 cites W2913756804 @default.
- W2980895329 cites W2963375044 @default.
- W2980895329 cites W2963600684 @default.
- W2980895329 cites W3103194080 @default.
- W2980895329 cites W4211177544 @default.
- W2980895329 cites W59547713 @default.
- W2980895329 doi "https://doi.org/10.1016/j.spasta.2019.100392" @default.
- W2980895329 hasPublicationYear "2020" @default.
- W2980895329 type Work @default.
- W2980895329 sameAs 2980895329 @default.
- W2980895329 citedByCount "10" @default.
- W2980895329 countsByYear W29808953292020 @default.
- W2980895329 countsByYear W29808953292021 @default.
- W2980895329 countsByYear W29808953292022 @default.
- W2980895329 countsByYear W29808953292023 @default.
- W2980895329 crossrefType "journal-article" @default.
- W2980895329 hasAuthorship W2980895329A5057385440 @default.
- W2980895329 hasAuthorship W2980895329A5077479006 @default.
- W2980895329 hasBestOaLocation W29808953291 @default.
- W2980895329 hasConcept C100906024 @default.
- W2980895329 hasConcept C105795698 @default.
- W2980895329 hasConcept C106131492 @default.
- W2980895329 hasConcept C107673813 @default.
- W2980895329 hasConcept C11413529 @default.
- W2980895329 hasConcept C121332964 @default.
- W2980895329 hasConcept C124101348 @default.
- W2980895329 hasConcept C138885662 @default.
- W2980895329 hasConcept C140779682 @default.
- W2980895329 hasConcept C155051063 @default.
- W2980895329 hasConcept C160234255 @default.
- W2980895329 hasConcept C163716315 @default.
- W2980895329 hasConcept C166144826 @default.
- W2980895329 hasConcept C186394612 @default.
- W2980895329 hasConcept C207390915 @default.
- W2980895329 hasConcept C31972630 @default.
- W2980895329 hasConcept C33923547 @default.
- W2980895329 hasConcept C41008148 @default.
- W2980895329 hasConcept C41895202 @default.
- W2980895329 hasConcept C61326573 @default.
- W2980895329 hasConcept C62520636 @default.
- W2980895329 hasConcept C88871306 @default.
- W2980895329 hasConceptScore W2980895329C100906024 @default.
- W2980895329 hasConceptScore W2980895329C105795698 @default.
- W2980895329 hasConceptScore W2980895329C106131492 @default.
- W2980895329 hasConceptScore W2980895329C107673813 @default.
- W2980895329 hasConceptScore W2980895329C11413529 @default.
- W2980895329 hasConceptScore W2980895329C121332964 @default.
- W2980895329 hasConceptScore W2980895329C124101348 @default.
- W2980895329 hasConceptScore W2980895329C138885662 @default.
- W2980895329 hasConceptScore W2980895329C140779682 @default.
- W2980895329 hasConceptScore W2980895329C155051063 @default.
- W2980895329 hasConceptScore W2980895329C160234255 @default.
- W2980895329 hasConceptScore W2980895329C163716315 @default.
- W2980895329 hasConceptScore W2980895329C166144826 @default.
- W2980895329 hasConceptScore W2980895329C186394612 @default.
- W2980895329 hasConceptScore W2980895329C207390915 @default.