Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980948052> ?p ?o ?g. }
- W2980948052 abstract "Abstract Spatial autocorrelation in the residuals of spatial environmental models can be due to missing covariate information. In many cases, this spatial autocorrelation can be accounted for by using covariates from multiple scales. Here, we propose a data-driven, objective and systematic method for deriving the relevant range of scales, with distinct upper and lower scale limits, for spatial modelling with machine learning and evaluated its effect on modelling accuracy. We also tested an approach that uses the variogram to see whether such an effective scale space can be approximated a priori and at smaller computational cost. Results showed that modelling with an effective scale space can improve spatial modelling with machine learning and that there is a strong correlation between properties of the variogram and the relevant range of scales. Hence, the variogram of a soil property can be used for a priori approximations of the effective scale space for contextual spatial modelling and is therefore an important analytical tool not only in geostatistics, but also for analyzing structural dependencies in contextual spatial modelling." @default.
- W2980948052 created "2019-10-25" @default.
- W2980948052 creator A5025710951 @default.
- W2980948052 creator A5044350973 @default.
- W2980948052 creator A5054909575 @default.
- W2980948052 creator A5057571908 @default.
- W2980948052 creator A5058842572 @default.
- W2980948052 creator A5065698378 @default.
- W2980948052 creator A5065952924 @default.
- W2980948052 creator A5073655843 @default.
- W2980948052 date "2019-10-15" @default.
- W2980948052 modified "2023-10-12" @default.
- W2980948052 title "The relevant range of scales for multi-scale contextual spatial modelling" @default.
- W2980948052 cites W148821480 @default.
- W2980948052 cites W1866320023 @default.
- W2980948052 cites W1877762991 @default.
- W2980948052 cites W1911362169 @default.
- W2980948052 cites W1969839347 @default.
- W2980948052 cites W1973273412 @default.
- W2980948052 cites W1983513512 @default.
- W2980948052 cites W1985642751 @default.
- W2980948052 cites W1991476842 @default.
- W2980948052 cites W2003273023 @default.
- W2980948052 cites W2007133787 @default.
- W2980948052 cites W2013146269 @default.
- W2980948052 cites W2024697317 @default.
- W2980948052 cites W2026961403 @default.
- W2980948052 cites W2027980327 @default.
- W2980948052 cites W2034044894 @default.
- W2980948052 cites W2052611179 @default.
- W2980948052 cites W2063084563 @default.
- W2980948052 cites W2063246330 @default.
- W2980948052 cites W2066730534 @default.
- W2980948052 cites W2081340599 @default.
- W2980948052 cites W2103504761 @default.
- W2980948052 cites W2139086914 @default.
- W2980948052 cites W2151816012 @default.
- W2980948052 cites W2158225094 @default.
- W2980948052 cites W2163125005 @default.
- W2980948052 cites W2169783884 @default.
- W2980948052 cites W2335562929 @default.
- W2980948052 cites W2754986997 @default.
- W2980948052 cites W2896139965 @default.
- W2980948052 cites W2911964244 @default.
- W2980948052 cites W2963288929 @default.
- W2980948052 cites W4255515619 @default.
- W2980948052 doi "https://doi.org/10.1038/s41598-019-51395-3" @default.
- W2980948052 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6794247" @default.
- W2980948052 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31616033" @default.
- W2980948052 hasPublicationYear "2019" @default.
- W2980948052 type Work @default.
- W2980948052 sameAs 2980948052 @default.
- W2980948052 citedByCount "13" @default.
- W2980948052 countsByYear W29809480522020 @default.
- W2980948052 countsByYear W29809480522021 @default.
- W2980948052 countsByYear W29809480522022 @default.
- W2980948052 countsByYear W29809480522023 @default.
- W2980948052 crossrefType "journal-article" @default.
- W2980948052 hasAuthorship W2980948052A5025710951 @default.
- W2980948052 hasAuthorship W2980948052A5044350973 @default.
- W2980948052 hasAuthorship W2980948052A5054909575 @default.
- W2980948052 hasAuthorship W2980948052A5057571908 @default.
- W2980948052 hasAuthorship W2980948052A5058842572 @default.
- W2980948052 hasAuthorship W2980948052A5065698378 @default.
- W2980948052 hasAuthorship W2980948052A5065952924 @default.
- W2980948052 hasAuthorship W2980948052A5073655843 @default.
- W2980948052 hasBestOaLocation W29809480521 @default.
- W2980948052 hasConcept C105795698 @default.
- W2980948052 hasConcept C111472728 @default.
- W2980948052 hasConcept C119043178 @default.
- W2980948052 hasConcept C119857082 @default.
- W2980948052 hasConcept C124101348 @default.
- W2980948052 hasConcept C125572338 @default.
- W2980948052 hasConcept C138695830 @default.
- W2980948052 hasConcept C138885662 @default.
- W2980948052 hasConcept C150060386 @default.
- W2980948052 hasConcept C154881674 @default.
- W2980948052 hasConcept C158709400 @default.
- W2980948052 hasConcept C159620131 @default.
- W2980948052 hasConcept C159985019 @default.
- W2980948052 hasConcept C18903297 @default.
- W2980948052 hasConcept C192562407 @default.
- W2980948052 hasConcept C204323151 @default.
- W2980948052 hasConcept C205649164 @default.
- W2980948052 hasConcept C2778755073 @default.
- W2980948052 hasConcept C33923547 @default.
- W2980948052 hasConcept C41008148 @default.
- W2980948052 hasConcept C5297727 @default.
- W2980948052 hasConcept C58640448 @default.
- W2980948052 hasConcept C75553542 @default.
- W2980948052 hasConcept C81692654 @default.
- W2980948052 hasConcept C86803240 @default.
- W2980948052 hasConcept C94747663 @default.
- W2980948052 hasConceptScore W2980948052C105795698 @default.
- W2980948052 hasConceptScore W2980948052C111472728 @default.
- W2980948052 hasConceptScore W2980948052C119043178 @default.
- W2980948052 hasConceptScore W2980948052C119857082 @default.
- W2980948052 hasConceptScore W2980948052C124101348 @default.
- W2980948052 hasConceptScore W2980948052C125572338 @default.
- W2980948052 hasConceptScore W2980948052C138695830 @default.