Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980956948> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2980956948 abstract "Data mining has been done a great progress in the recent years. It is helpful to acquiring knowledge from large domains of databases. In data mining clustering is extremely useful to find distribution design in the fundamental data. Clustering algorithm generallyemploy as distance metric constructedsimilarity measure in order to cluster the databases such that data points in the same partition are more similar than points in different partition. The proposed research work focuses on Computing DEGs, Up and Down Regulated DEGs from Parkinson Disease Microarray Gene expression data set using Statistical significance and Biological significance, Classifying the Up and Down Regulated DEGs using the K-means, PAM and CLARA partitioning clustering algorithm, and validating the cluster results,from the results it is observed that K-means performs well for microarray datasets. Clustering itself is not enough to identify the significant similarity of genes biomarkers with respect to the particular disease category. Further it needs to identifying the Co-expressed gene network to get deep insights to extract significant DEGs which really part of the particular disease. Thus, Co-expressed genes are identified using Pearson Correlation method. From the proposed research work it is observed that DEGs clustered by K-means algorithm have more interaction with the Co-experession raio 0.39 have more interaction, CLARA algorithm with the Co-experession raio 0.38 and the PAM algorithm with the Co-experession raio 0.32 have the less interaction." @default.
- W2980956948 created "2019-10-25" @default.
- W2980956948 creator A5025034941 @default.
- W2980956948 creator A5061624620 @default.
- W2980956948 date "2019-02-01" @default.
- W2980956948 modified "2023-09-23" @default.
- W2980956948 title "Extraction of Co-Expressed Degs From Parkinson Disease Microarray Dataset Using Partition Based Clustering Techniques" @default.
- W2980956948 cites W1999859595 @default.
- W2980956948 cites W2135945534 @default.
- W2980956948 doi "https://doi.org/10.1109/icecct.2019.8869140" @default.
- W2980956948 hasPublicationYear "2019" @default.
- W2980956948 type Work @default.
- W2980956948 sameAs 2980956948 @default.
- W2980956948 citedByCount "0" @default.
- W2980956948 crossrefType "proceedings-article" @default.
- W2980956948 hasAuthorship W2980956948A5025034941 @default.
- W2980956948 hasAuthorship W2980956948A5061624620 @default.
- W2980956948 hasConcept C103278499 @default.
- W2980956948 hasConcept C104317684 @default.
- W2980956948 hasConcept C114614502 @default.
- W2980956948 hasConcept C115961682 @default.
- W2980956948 hasConcept C124101348 @default.
- W2980956948 hasConcept C127413603 @default.
- W2980956948 hasConcept C150194340 @default.
- W2980956948 hasConcept C153180895 @default.
- W2980956948 hasConcept C154945302 @default.
- W2980956948 hasConcept C176217482 @default.
- W2980956948 hasConcept C186767784 @default.
- W2980956948 hasConcept C21547014 @default.
- W2980956948 hasConcept C24361400 @default.
- W2980956948 hasConcept C33704608 @default.
- W2980956948 hasConcept C33923547 @default.
- W2980956948 hasConcept C41008148 @default.
- W2980956948 hasConcept C42812 @default.
- W2980956948 hasConcept C55493867 @default.
- W2980956948 hasConcept C73555534 @default.
- W2980956948 hasConcept C8415881 @default.
- W2980956948 hasConcept C86803240 @default.
- W2980956948 hasConcept C94641424 @default.
- W2980956948 hasConcept C95371953 @default.
- W2980956948 hasConceptScore W2980956948C103278499 @default.
- W2980956948 hasConceptScore W2980956948C104317684 @default.
- W2980956948 hasConceptScore W2980956948C114614502 @default.
- W2980956948 hasConceptScore W2980956948C115961682 @default.
- W2980956948 hasConceptScore W2980956948C124101348 @default.
- W2980956948 hasConceptScore W2980956948C127413603 @default.
- W2980956948 hasConceptScore W2980956948C150194340 @default.
- W2980956948 hasConceptScore W2980956948C153180895 @default.
- W2980956948 hasConceptScore W2980956948C154945302 @default.
- W2980956948 hasConceptScore W2980956948C176217482 @default.
- W2980956948 hasConceptScore W2980956948C186767784 @default.
- W2980956948 hasConceptScore W2980956948C21547014 @default.
- W2980956948 hasConceptScore W2980956948C24361400 @default.
- W2980956948 hasConceptScore W2980956948C33704608 @default.
- W2980956948 hasConceptScore W2980956948C33923547 @default.
- W2980956948 hasConceptScore W2980956948C41008148 @default.
- W2980956948 hasConceptScore W2980956948C42812 @default.
- W2980956948 hasConceptScore W2980956948C55493867 @default.
- W2980956948 hasConceptScore W2980956948C73555534 @default.
- W2980956948 hasConceptScore W2980956948C8415881 @default.
- W2980956948 hasConceptScore W2980956948C86803240 @default.
- W2980956948 hasConceptScore W2980956948C94641424 @default.
- W2980956948 hasConceptScore W2980956948C95371953 @default.
- W2980956948 hasLocation W29809569481 @default.
- W2980956948 hasOpenAccess W2980956948 @default.
- W2980956948 hasPrimaryLocation W29809569481 @default.
- W2980956948 hasRelatedWork W1584979523 @default.
- W2980956948 hasRelatedWork W1988866597 @default.
- W2980956948 hasRelatedWork W2043803919 @default.
- W2980956948 hasRelatedWork W2105993799 @default.
- W2980956948 hasRelatedWork W2356020937 @default.
- W2980956948 hasRelatedWork W2465711087 @default.
- W2980956948 hasRelatedWork W2556301711 @default.
- W2980956948 hasRelatedWork W2946626286 @default.
- W2980956948 hasRelatedWork W2980956948 @default.
- W2980956948 hasRelatedWork W2189105355 @default.
- W2980956948 isParatext "false" @default.
- W2980956948 isRetracted "false" @default.
- W2980956948 magId "2980956948" @default.
- W2980956948 workType "article" @default.