Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980959747> ?p ?o ?g. }
- W2980959747 endingPage "3869" @default.
- W2980959747 startingPage "3859" @default.
- W2980959747 abstract "Blur is one of the most common distortions that degrade natural images. This stimulates the blossom of sharpness assessment metrics. Existing sharpness metrics possess good performance for evaluating simulated blur, but are limited for the more common realistic blur that are introduced during image capture and processing in real life. To this end, we propose an effective Realistic Blur Assessment method (RBA) based on discrepancy learning. First, motivated by the fact that the distortion-free reference images are usually unavailable in practice, but the Human Visual System (HVS) can still accurately perceive image sharpness by quantifying the perceptual discrepancy between the distorted image and the hallucinated reference image in mind, we propose to train a discrepancy generation model to automatically generate the discrepancy map from the distorted image analogous to the HVS. This is achieved by using a deep neural network with rich training images. With the discrepancy map, two sharpness-aware features, i.e. sparse representation based entropy of primitive and content-guided variation of power, are then extracted to severally quantify spatial visual information amount and spectral power. Finally, the two features are integrated to produce the overall sharpness score. Extensive experiments demonstrate the superiority of the proposed method over the state-of-the-arts." @default.
- W2980959747 created "2019-10-25" @default.
- W2980959747 creator A5010873624 @default.
- W2980959747 creator A5027089869 @default.
- W2980959747 creator A5027716702 @default.
- W2980959747 creator A5033615240 @default.
- W2980959747 creator A5063013411 @default.
- W2980959747 date "2020-11-01" @default.
- W2980959747 modified "2023-10-11" @default.
- W2980959747 title "Blind Realistic Blur Assessment Based on Discrepancy Learning" @default.
- W2980959747 cites W1562683879 @default.
- W2980959747 cites W1677182931 @default.
- W2980959747 cites W1977246677 @default.
- W2980959747 cites W1977725648 @default.
- W2980959747 cites W1978598038 @default.
- W2980959747 cites W1979451680 @default.
- W2980959747 cites W1982471090 @default.
- W2980959747 cites W1984066865 @default.
- W2980959747 cites W1989981252 @default.
- W2980959747 cites W1990311803 @default.
- W2980959747 cites W2045440310 @default.
- W2980959747 cites W2069737080 @default.
- W2980959747 cites W2081447941 @default.
- W2980959747 cites W2085448797 @default.
- W2980959747 cites W2102166818 @default.
- W2980959747 cites W2114338738 @default.
- W2980959747 cites W2117117414 @default.
- W2980959747 cites W2117644767 @default.
- W2980959747 cites W2121689659 @default.
- W2980959747 cites W2127271355 @default.
- W2980959747 cites W2129644086 @default.
- W2980959747 cites W2134963900 @default.
- W2980959747 cites W2138088051 @default.
- W2980959747 cites W2143901157 @default.
- W2980959747 cites W2160547390 @default.
- W2980959747 cites W2161907179 @default.
- W2980959747 cites W2162692770 @default.
- W2980959747 cites W2162915697 @default.
- W2980959747 cites W2163370434 @default.
- W2980959747 cites W2171577825 @default.
- W2980959747 cites W2242218935 @default.
- W2980959747 cites W2316248200 @default.
- W2980959747 cites W2320852756 @default.
- W2980959747 cites W2342973802 @default.
- W2980959747 cites W2343540775 @default.
- W2980959747 cites W2500825094 @default.
- W2980959747 cites W2556068545 @default.
- W2980959747 cites W2564196066 @default.
- W2980959747 cites W2609698233 @default.
- W2980959747 cites W2610781289 @default.
- W2980959747 cites W2725637714 @default.
- W2980959747 cites W2757659728 @default.
- W2980959747 cites W2770189358 @default.
- W2980959747 cites W2772143815 @default.
- W2980959747 cites W2791083848 @default.
- W2980959747 cites W2794680924 @default.
- W2980959747 cites W2795832645 @default.
- W2980959747 cites W2801643666 @default.
- W2980959747 cites W2897228451 @default.
- W2980959747 cites W2911118516 @default.
- W2980959747 cites W2941841503 @default.
- W2980959747 cites W2964065910 @default.
- W2980959747 cites W4238491817 @default.
- W2980959747 doi "https://doi.org/10.1109/tcsvt.2019.2947450" @default.
- W2980959747 hasPublicationYear "2020" @default.
- W2980959747 type Work @default.
- W2980959747 sameAs 2980959747 @default.
- W2980959747 citedByCount "5" @default.
- W2980959747 countsByYear W29809597472022 @default.
- W2980959747 countsByYear W29809597472023 @default.
- W2980959747 crossrefType "journal-article" @default.
- W2980959747 hasAuthorship W2980959747A5010873624 @default.
- W2980959747 hasAuthorship W2980959747A5027089869 @default.
- W2980959747 hasAuthorship W2980959747A5027716702 @default.
- W2980959747 hasAuthorship W2980959747A5033615240 @default.
- W2980959747 hasAuthorship W2980959747A5063013411 @default.
- W2980959747 hasConcept C106301342 @default.
- W2980959747 hasConcept C106430172 @default.
- W2980959747 hasConcept C115961682 @default.
- W2980959747 hasConcept C121332964 @default.
- W2980959747 hasConcept C126780896 @default.
- W2980959747 hasConcept C153180895 @default.
- W2980959747 hasConcept C154945302 @default.
- W2980959747 hasConcept C160086991 @default.
- W2980959747 hasConcept C194257627 @default.
- W2980959747 hasConcept C2776257435 @default.
- W2980959747 hasConcept C2911011789 @default.
- W2980959747 hasConcept C31258907 @default.
- W2980959747 hasConcept C31972630 @default.
- W2980959747 hasConcept C41008148 @default.
- W2980959747 hasConcept C50644808 @default.
- W2980959747 hasConcept C62520636 @default.
- W2980959747 hasConcept C9417928 @default.
- W2980959747 hasConceptScore W2980959747C106301342 @default.
- W2980959747 hasConceptScore W2980959747C106430172 @default.
- W2980959747 hasConceptScore W2980959747C115961682 @default.
- W2980959747 hasConceptScore W2980959747C121332964 @default.
- W2980959747 hasConceptScore W2980959747C126780896 @default.