Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980961705> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2980961705 endingPage "351" @default.
- W2980961705 startingPage "342" @default.
- W2980961705 abstract "Ionizing-radiation-resistant bacteria (IRRB) could be used for bioremediation of radioactive wastes and in the therapeutic industry. Limited computational works are available for the prediction of bacterial ionizing radiation resistance (IRR). In this work, we present ABClass, an in silico approach that predicts if an unknown bacterium belongs to IRRB or ionizing-radiation-sensitive bacteria (IRSB). This approach is based on a multiple instance learning (MIL) formulation of the IRR prediction problem. It takes into account the relation between semantically related instances across bags. In ABClass, a preprocessing step is performed in order to extract substructures/motifs from each set of related sequences. These motifs are then used as attributes to construct a vector representation for each set of sequences. In order to compute partial prediction results, a discriminative classifier is applied to each sequence of the unknown bag and its correspondent related sequences in the learning dataset. Finally, an aggregation method is applied to generate the final result. The algorithm provides good overall accuracy rates. ABClass can be downloaded at the following link: http://homepages.loria.fr/SAridhi/software/MIL/." @default.
- W2980961705 created "2019-10-25" @default.
- W2980961705 creator A5019200975 @default.
- W2980961705 creator A5055068731 @default.
- W2980961705 creator A5057686129 @default.
- W2980961705 creator A5079246491 @default.
- W2980961705 date "2019-01-01" @default.
- W2980961705 modified "2023-10-09" @default.
- W2980961705 title "A Structure Based Multiple Instance Learning Approach for Bacterial Ionizing Radiation Resistance Prediction" @default.
- W2980961705 cites W1980325237 @default.
- W2980961705 cites W1980608565 @default.
- W2980961705 cites W2010792435 @default.
- W2980961705 cites W2113320648 @default.
- W2980961705 cites W2125479168 @default.
- W2980961705 cites W2126045294 @default.
- W2980961705 cites W2133990480 @default.
- W2980961705 cites W2146439336 @default.
- W2980961705 cites W2809312757 @default.
- W2980961705 doi "https://doi.org/10.1016/j.procs.2019.09.189" @default.
- W2980961705 hasPublicationYear "2019" @default.
- W2980961705 type Work @default.
- W2980961705 sameAs 2980961705 @default.
- W2980961705 citedByCount "0" @default.
- W2980961705 crossrefType "journal-article" @default.
- W2980961705 hasAuthorship W2980961705A5019200975 @default.
- W2980961705 hasAuthorship W2980961705A5055068731 @default.
- W2980961705 hasAuthorship W2980961705A5057686129 @default.
- W2980961705 hasAuthorship W2980961705A5079246491 @default.
- W2980961705 hasBestOaLocation W29809617051 @default.
- W2980961705 hasConcept C104317684 @default.
- W2980961705 hasConcept C111337013 @default.
- W2980961705 hasConcept C119857082 @default.
- W2980961705 hasConcept C121332964 @default.
- W2980961705 hasConcept C124101348 @default.
- W2980961705 hasConcept C153180895 @default.
- W2980961705 hasConcept C154945302 @default.
- W2980961705 hasConcept C18231593 @default.
- W2980961705 hasConcept C185544564 @default.
- W2980961705 hasConcept C199360897 @default.
- W2980961705 hasConcept C2775905019 @default.
- W2980961705 hasConcept C2777904410 @default.
- W2980961705 hasConcept C34736171 @default.
- W2980961705 hasConcept C41008148 @default.
- W2980961705 hasConcept C55493867 @default.
- W2980961705 hasConcept C86803240 @default.
- W2980961705 hasConcept C95623464 @default.
- W2980961705 hasConcept C97931131 @default.
- W2980961705 hasConceptScore W2980961705C104317684 @default.
- W2980961705 hasConceptScore W2980961705C111337013 @default.
- W2980961705 hasConceptScore W2980961705C119857082 @default.
- W2980961705 hasConceptScore W2980961705C121332964 @default.
- W2980961705 hasConceptScore W2980961705C124101348 @default.
- W2980961705 hasConceptScore W2980961705C153180895 @default.
- W2980961705 hasConceptScore W2980961705C154945302 @default.
- W2980961705 hasConceptScore W2980961705C18231593 @default.
- W2980961705 hasConceptScore W2980961705C185544564 @default.
- W2980961705 hasConceptScore W2980961705C199360897 @default.
- W2980961705 hasConceptScore W2980961705C2775905019 @default.
- W2980961705 hasConceptScore W2980961705C2777904410 @default.
- W2980961705 hasConceptScore W2980961705C34736171 @default.
- W2980961705 hasConceptScore W2980961705C41008148 @default.
- W2980961705 hasConceptScore W2980961705C55493867 @default.
- W2980961705 hasConceptScore W2980961705C86803240 @default.
- W2980961705 hasConceptScore W2980961705C95623464 @default.
- W2980961705 hasConceptScore W2980961705C97931131 @default.
- W2980961705 hasLocation W29809617051 @default.
- W2980961705 hasLocation W29809617052 @default.
- W2980961705 hasLocation W29809617053 @default.
- W2980961705 hasLocation W29809617054 @default.
- W2980961705 hasLocation W29809617055 @default.
- W2980961705 hasOpenAccess W2980961705 @default.
- W2980961705 hasPrimaryLocation W29809617051 @default.
- W2980961705 hasRelatedWork W1972656095 @default.
- W2980961705 hasRelatedWork W2024160000 @default.
- W2980961705 hasRelatedWork W2061273563 @default.
- W2980961705 hasRelatedWork W2285052147 @default.
- W2980961705 hasRelatedWork W2729514902 @default.
- W2980961705 hasRelatedWork W2743258233 @default.
- W2980961705 hasRelatedWork W2773500201 @default.
- W2980961705 hasRelatedWork W2970216048 @default.
- W2980961705 hasRelatedWork W2998168123 @default.
- W2980961705 hasRelatedWork W4287995534 @default.
- W2980961705 hasVolume "159" @default.
- W2980961705 isParatext "false" @default.
- W2980961705 isRetracted "false" @default.
- W2980961705 magId "2980961705" @default.
- W2980961705 workType "article" @default.