Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980969501> ?p ?o ?g. }
- W2980969501 endingPage "12" @default.
- W2980969501 startingPage "1" @default.
- W2980969501 abstract "Motion artifacts and myoelectrical noise are common issues complicating the collection and processing of dynamic electrocardiogram (ECG) signals. Recent signal quality studies have utilized a binary classification metric in which ECG samples are determined to either be clean or noisy. However, the clinical use of dynamic ECGs requires specific noise level classification for varying applications. Conventional signal processing methods, including waveform discrimination, are limited in their ability to remove motion artifacts and myoelectrical noise from dynamic ECGs. As such, a novel cascaded convolutional neural network (CNN) is proposed and demonstrated for application to the five-classification problem (low interference, mild motion artifacts, mild myoelectrical noise, severe motion artifacts, and severe myoelectrical noise). Specifically, this study finally categorizes dynamic ECG signals into three levels (low, mild, and severe) using the proposed CNN to meet clinical requirements. The network includes two components, the first of which was used to distinguish signal interference types, while the second was used to distinguish signal interference levels. This model does not require feature engineering, includes powerful nonlinear mapping capabilities, and is robust to varying noise types. Experimental data are composed of private dataset and public dataset, which were acquired from 90,000 four-second dynamic ECG signals and MIT-BIH Arrhythmia database, respectively. Experimental results produced an overall recognition rate of 92.7% on private dataset and 91.8% on public dataset. These results suggest the proposed technique to be a valuable new tool for dynamic ECG auxiliary diagnosis." @default.
- W2980969501 created "2019-10-25" @default.
- W2980969501 creator A5012392193 @default.
- W2980969501 creator A5022846767 @default.
- W2980969501 creator A5074755129 @default.
- W2980969501 date "2019-10-20" @default.
- W2980969501 modified "2023-10-13" @default.
- W2980969501 title "A Cascaded Convolutional Neural Network for Assessing Signal Quality of Dynamic ECG" @default.
- W2980969501 cites W1965421420 @default.
- W2980969501 cites W2038436648 @default.
- W2980969501 cites W2046788142 @default.
- W2980969501 cites W2049755262 @default.
- W2980969501 cites W2055741845 @default.
- W2980969501 cites W2085390506 @default.
- W2980969501 cites W2095409369 @default.
- W2980969501 cites W2163074678 @default.
- W2980969501 cites W2236428329 @default.
- W2980969501 cites W2291961022 @default.
- W2980969501 cites W2610120229 @default.
- W2980969501 cites W2620656322 @default.
- W2980969501 cites W2622826443 @default.
- W2980969501 cites W2793150943 @default.
- W2980969501 cites W2794557162 @default.
- W2980969501 cites W2801448182 @default.
- W2980969501 cites W2889838428 @default.
- W2980969501 cites W2902644322 @default.
- W2980969501 cites W2919115771 @default.
- W2980969501 doi "https://doi.org/10.1155/2019/7095137" @default.
- W2980969501 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6855083" @default.
- W2980969501 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31781289" @default.
- W2980969501 hasPublicationYear "2019" @default.
- W2980969501 type Work @default.
- W2980969501 sameAs 2980969501 @default.
- W2980969501 citedByCount "23" @default.
- W2980969501 countsByYear W29809695012020 @default.
- W2980969501 countsByYear W29809695012021 @default.
- W2980969501 countsByYear W29809695012022 @default.
- W2980969501 countsByYear W29809695012023 @default.
- W2980969501 crossrefType "journal-article" @default.
- W2980969501 hasAuthorship W2980969501A5012392193 @default.
- W2980969501 hasAuthorship W2980969501A5022846767 @default.
- W2980969501 hasAuthorship W2980969501A5074755129 @default.
- W2980969501 hasBestOaLocation W29809695011 @default.
- W2980969501 hasConcept C115961682 @default.
- W2980969501 hasConcept C127162648 @default.
- W2980969501 hasConcept C127413603 @default.
- W2980969501 hasConcept C138885662 @default.
- W2980969501 hasConcept C153180895 @default.
- W2980969501 hasConcept C154945302 @default.
- W2980969501 hasConcept C176217482 @default.
- W2980969501 hasConcept C197424946 @default.
- W2980969501 hasConcept C199360897 @default.
- W2980969501 hasConcept C21547014 @default.
- W2980969501 hasConcept C2776401178 @default.
- W2980969501 hasConcept C2779843651 @default.
- W2980969501 hasConcept C28490314 @default.
- W2980969501 hasConcept C32022120 @default.
- W2980969501 hasConcept C41008148 @default.
- W2980969501 hasConcept C41895202 @default.
- W2980969501 hasConcept C50644808 @default.
- W2980969501 hasConcept C554190296 @default.
- W2980969501 hasConcept C76155785 @default.
- W2980969501 hasConcept C81363708 @default.
- W2980969501 hasConcept C99498987 @default.
- W2980969501 hasConceptScore W2980969501C115961682 @default.
- W2980969501 hasConceptScore W2980969501C127162648 @default.
- W2980969501 hasConceptScore W2980969501C127413603 @default.
- W2980969501 hasConceptScore W2980969501C138885662 @default.
- W2980969501 hasConceptScore W2980969501C153180895 @default.
- W2980969501 hasConceptScore W2980969501C154945302 @default.
- W2980969501 hasConceptScore W2980969501C176217482 @default.
- W2980969501 hasConceptScore W2980969501C197424946 @default.
- W2980969501 hasConceptScore W2980969501C199360897 @default.
- W2980969501 hasConceptScore W2980969501C21547014 @default.
- W2980969501 hasConceptScore W2980969501C2776401178 @default.
- W2980969501 hasConceptScore W2980969501C2779843651 @default.
- W2980969501 hasConceptScore W2980969501C28490314 @default.
- W2980969501 hasConceptScore W2980969501C32022120 @default.
- W2980969501 hasConceptScore W2980969501C41008148 @default.
- W2980969501 hasConceptScore W2980969501C41895202 @default.
- W2980969501 hasConceptScore W2980969501C50644808 @default.
- W2980969501 hasConceptScore W2980969501C554190296 @default.
- W2980969501 hasConceptScore W2980969501C76155785 @default.
- W2980969501 hasConceptScore W2980969501C81363708 @default.
- W2980969501 hasConceptScore W2980969501C99498987 @default.
- W2980969501 hasLocation W29809695011 @default.
- W2980969501 hasLocation W29809695012 @default.
- W2980969501 hasLocation W29809695013 @default.
- W2980969501 hasLocation W29809695014 @default.
- W2980969501 hasLocation W29809695015 @default.
- W2980969501 hasOpenAccess W2980969501 @default.
- W2980969501 hasPrimaryLocation W29809695011 @default.
- W2980969501 hasRelatedWork W2175746458 @default.
- W2980969501 hasRelatedWork W2613736958 @default.
- W2980969501 hasRelatedWork W2726121760 @default.
- W2980969501 hasRelatedWork W2732542196 @default.
- W2980969501 hasRelatedWork W2738221750 @default.
- W2980969501 hasRelatedWork W2760085659 @default.