Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980972480> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2980972480 abstract "Neural processes (NPs) learn stochastic processes and predict the distribution of target output adaptively conditioned on a context set of observed input-output pairs. Furthermore, Attentive Neural Process (ANP) improved the prediction accuracy of NPs by incorporating attention mechanism among contexts and targets. In a number of real-world applications such as robotics, finance, speech, and biology, it is critical to learn the temporal order and recurrent structure from sequential data. However, the capability of NPs capturing these properties is limited due to its permutation invariance instinct. In this paper, we proposed the Recurrent Attentive Neural Process (RANP), or alternatively, Attentive Neural Process-RecurrentNeural Network(ANP-RNN), in which the ANP is incorporated into a recurrent neural network. The proposed model encapsulates both the inductive biases of recurrent neural networks and also the strength of NPs for modelling uncertainty. We demonstrate that RANP can effectively model sequential data and outperforms NPs and LSTMs remarkably in a 1D regression toy example as well as autonomous-driving applications." @default.
- W2980972480 created "2019-10-25" @default.
- W2980972480 creator A5007030390 @default.
- W2980972480 creator A5026307285 @default.
- W2980972480 creator A5037644321 @default.
- W2980972480 creator A5044212738 @default.
- W2980972480 creator A5055099598 @default.
- W2980972480 date "2019-10-17" @default.
- W2980972480 modified "2023-09-27" @default.
- W2980972480 title "Recurrent Attentive Neural Process for Sequential Data" @default.
- W2980972480 cites W1544016679 @default.
- W2980972480 cites W2064675550 @default.
- W2980972480 cites W2130942839 @default.
- W2980972480 cites W2137135057 @default.
- W2980972480 cites W2143612262 @default.
- W2980972480 cites W2166063021 @default.
- W2980972480 cites W2176035349 @default.
- W2980972480 cites W2179793346 @default.
- W2980972480 cites W2396178844 @default.
- W2980972480 cites W2542136887 @default.
- W2980972480 cites W2549019841 @default.
- W2980972480 cites W2588768352 @default.
- W2980972480 cites W2594230714 @default.
- W2980972480 cites W2604763608 @default.
- W2980972480 cites W2756270408 @default.
- W2980972480 cites W2785485239 @default.
- W2980972480 cites W2808492412 @default.
- W2980972480 cites W2811342056 @default.
- W2980972480 cites W2951004968 @default.
- W2980972480 cites W2951249948 @default.
- W2980972480 cites W2954829150 @default.
- W2980972480 cites W2962908092 @default.
- W2980972480 cites W2963166838 @default.
- W2980972480 cites W2963403868 @default.
- W2980972480 cites W2963557251 @default.
- W2980972480 cites W2963561441 @default.
- W2980972480 cites W2963956769 @default.
- W2980972480 cites W2964135722 @default.
- W2980972480 cites W2964232608 @default.
- W2980972480 cites W2964298947 @default.
- W2980972480 cites W2970476740 @default.
- W2980972480 cites W588139629 @default.
- W2980972480 cites W592244745 @default.
- W2980972480 doi "https://doi.org/10.48550/arxiv.1910.09323" @default.
- W2980972480 hasPublicationYear "2019" @default.
- W2980972480 type Work @default.
- W2980972480 sameAs 2980972480 @default.
- W2980972480 citedByCount "10" @default.
- W2980972480 countsByYear W29809724802020 @default.
- W2980972480 countsByYear W29809724802021 @default.
- W2980972480 crossrefType "posted-content" @default.
- W2980972480 hasAuthorship W2980972480A5007030390 @default.
- W2980972480 hasAuthorship W2980972480A5026307285 @default.
- W2980972480 hasAuthorship W2980972480A5037644321 @default.
- W2980972480 hasAuthorship W2980972480A5044212738 @default.
- W2980972480 hasAuthorship W2980972480A5055099598 @default.
- W2980972480 hasBestOaLocation W29809724801 @default.
- W2980972480 hasConcept C111919701 @default.
- W2980972480 hasConcept C119857082 @default.
- W2980972480 hasConcept C121332964 @default.
- W2980972480 hasConcept C147168706 @default.
- W2980972480 hasConcept C151730666 @default.
- W2980972480 hasConcept C154945302 @default.
- W2980972480 hasConcept C21308566 @default.
- W2980972480 hasConcept C24890656 @default.
- W2980972480 hasConcept C2779343474 @default.
- W2980972480 hasConcept C41008148 @default.
- W2980972480 hasConcept C50644808 @default.
- W2980972480 hasConcept C86803240 @default.
- W2980972480 hasConcept C98045186 @default.
- W2980972480 hasConceptScore W2980972480C111919701 @default.
- W2980972480 hasConceptScore W2980972480C119857082 @default.
- W2980972480 hasConceptScore W2980972480C121332964 @default.
- W2980972480 hasConceptScore W2980972480C147168706 @default.
- W2980972480 hasConceptScore W2980972480C151730666 @default.
- W2980972480 hasConceptScore W2980972480C154945302 @default.
- W2980972480 hasConceptScore W2980972480C21308566 @default.
- W2980972480 hasConceptScore W2980972480C24890656 @default.
- W2980972480 hasConceptScore W2980972480C2779343474 @default.
- W2980972480 hasConceptScore W2980972480C41008148 @default.
- W2980972480 hasConceptScore W2980972480C50644808 @default.
- W2980972480 hasConceptScore W2980972480C86803240 @default.
- W2980972480 hasConceptScore W2980972480C98045186 @default.
- W2980972480 hasLocation W29809724801 @default.
- W2980972480 hasOpenAccess W2980972480 @default.
- W2980972480 hasPrimaryLocation W29809724801 @default.
- W2980972480 hasRelatedWork W2793022090 @default.
- W2980972480 hasRelatedWork W2919358988 @default.
- W2980972480 hasRelatedWork W2996568036 @default.
- W2980972480 hasRelatedWork W3211546796 @default.
- W2980972480 hasRelatedWork W4213142596 @default.
- W2980972480 hasRelatedWork W4281386417 @default.
- W2980972480 hasRelatedWork W4298168912 @default.
- W2980972480 hasRelatedWork W4327531511 @default.
- W2980972480 hasRelatedWork W4327831767 @default.
- W2980972480 hasRelatedWork W1629725936 @default.
- W2980972480 isParatext "false" @default.
- W2980972480 isRetracted "false" @default.
- W2980972480 magId "2980972480" @default.
- W2980972480 workType "article" @default.