Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980974316> ?p ?o ?g. }
- W2980974316 endingPage "e338" @default.
- W2980974316 startingPage "e325" @default.
- W2980974316 abstract "Deep brain stimulation (DBS) surgery is an option for patients experiencing medically resistant neurologic symptoms. DBS complications are rare; finding significant predictors requires a large number of surgeries. Machine learning algorithms may be used to effectively predict these outcomes. The aims of this study were to 1) investigate preoperative clinical risk factors and 2) build machine learning models to predict adverse outcomes. This multicenter registry collected clinical and demographic characteristics of patients undergoing DBS surgery (n = 501) and tabulated occurrence of complications. Logistic regression was used to evaluate risk factors. Supervised learning algorithms were trained and validated on 70% and 30%, respectively, of both oversampled and original registry data. Performance was evaluated using area under the receiver operating characteristics curve (AUC), sensitivity, specificity, and accuracy. Logistic regression showed that the risk of complication was related to the operating institution in which the surgery was performed (odds ratio [OR] = 0.44, confidence interval [CI] = 0.25–0.78), body mass index (OR = 0.94, CI = 0.89–0.99), and diabetes (OR = 2.33, CI = 1.18–4.60). Patients with diabetes were almost 3× more likely to return to the operating room (OR = 2.78, CI = 1.31–5.88). Patients with a history of smoking were 4× more likely to experience postoperative infection (OR = 4.20, CI = 1.21–14.61). Supervised learning algorithms demonstrated high discrimination performance when predicting any complication (AUC = 0.86), a complication within 12 months (AUC = 0.91), return to the operating room (AUC = 0.88), and infection (AUC = 0.97). Age, body mass index, procedure side, gender, and a diagnosis of Parkinson disease were influential features. Multiple significant complication risk factors were identified, and supervised learning algorithms effectively predicted adverse outcomes in DBS surgery." @default.
- W2980974316 created "2019-10-25" @default.
- W2980974316 creator A5014188815 @default.
- W2980974316 creator A5033517438 @default.
- W2980974316 creator A5038495851 @default.
- W2980974316 creator A5040273119 @default.
- W2980974316 creator A5044114150 @default.
- W2980974316 creator A5048166387 @default.
- W2980974316 creator A5052745302 @default.
- W2980974316 creator A5073873127 @default.
- W2980974316 creator A5074830528 @default.
- W2980974316 creator A5086177281 @default.
- W2980974316 date "2020-02-01" @default.
- W2980974316 modified "2023-10-14" @default.
- W2980974316 title "Investigating Risk Factors and Predicting Complications in Deep Brain Stimulation Surgery with Machine Learning Algorithms" @default.
- W2980974316 cites W1564126251 @default.
- W2980974316 cites W1588282782 @default.
- W2980974316 cites W1678356000 @default.
- W2980974316 cites W1911169438 @default.
- W2980974316 cites W1941659294 @default.
- W2980974316 cites W1963946257 @default.
- W2980974316 cites W1965831062 @default.
- W2980974316 cites W1970073810 @default.
- W2980974316 cites W197402492 @default.
- W2980974316 cites W1983479840 @default.
- W2980974316 cites W1987519463 @default.
- W2980974316 cites W1994884548 @default.
- W2980974316 cites W2000963066 @default.
- W2980974316 cites W2013682908 @default.
- W2980974316 cites W2024797915 @default.
- W2980974316 cites W2032435122 @default.
- W2980974316 cites W2036079744 @default.
- W2980974316 cites W2042044318 @default.
- W2980974316 cites W2043796909 @default.
- W2980974316 cites W2048301249 @default.
- W2980974316 cites W2052611008 @default.
- W2980974316 cites W2059093735 @default.
- W2980974316 cites W2061696759 @default.
- W2980974316 cites W2062477851 @default.
- W2980974316 cites W2065974896 @default.
- W2980974316 cites W2068800358 @default.
- W2980974316 cites W2073368429 @default.
- W2980974316 cites W2087721966 @default.
- W2980974316 cites W2096945460 @default.
- W2980974316 cites W2103120311 @default.
- W2980974316 cites W2106100548 @default.
- W2980974316 cites W2106479238 @default.
- W2980974316 cites W2113011364 @default.
- W2980974316 cites W2115441252 @default.
- W2980974316 cites W2124227727 @default.
- W2980974316 cites W2124638964 @default.
- W2980974316 cites W2131918703 @default.
- W2980974316 cites W2143685192 @default.
- W2980974316 cites W2148143831 @default.
- W2980974316 cites W2170674956 @default.
- W2980974316 cites W2407714643 @default.
- W2980974316 cites W2411661991 @default.
- W2980974316 cites W2465175352 @default.
- W2980974316 cites W2474812513 @default.
- W2980974316 cites W2501483506 @default.
- W2980974316 cites W2529247528 @default.
- W2980974316 cites W2559899785 @default.
- W2980974316 cites W2569991516 @default.
- W2980974316 cites W2600043865 @default.
- W2980974316 cites W2612150286 @default.
- W2980974316 cites W2734277666 @default.
- W2980974316 cites W2761529114 @default.
- W2980974316 cites W2763556273 @default.
- W2980974316 cites W2766578745 @default.
- W2980974316 cites W2769174254 @default.
- W2980974316 cites W2769816116 @default.
- W2980974316 cites W2774613851 @default.
- W2980974316 cites W2791638980 @default.
- W2980974316 cites W2792986592 @default.
- W2980974316 cites W2793423272 @default.
- W2980974316 cites W2806145905 @default.
- W2980974316 cites W2886981146 @default.
- W2980974316 cites W2888864596 @default.
- W2980974316 cites W2895858475 @default.
- W2980974316 cites W2896163042 @default.
- W2980974316 cites W2915585540 @default.
- W2980974316 cites W4242062710 @default.
- W2980974316 doi "https://doi.org/10.1016/j.wneu.2019.10.063" @default.
- W2980974316 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31634625" @default.
- W2980974316 hasPublicationYear "2020" @default.
- W2980974316 type Work @default.
- W2980974316 sameAs 2980974316 @default.
- W2980974316 citedByCount "33" @default.
- W2980974316 countsByYear W29809743162020 @default.
- W2980974316 countsByYear W29809743162021 @default.
- W2980974316 countsByYear W29809743162022 @default.
- W2980974316 countsByYear W29809743162023 @default.
- W2980974316 crossrefType "journal-article" @default.
- W2980974316 hasAuthorship W2980974316A5014188815 @default.
- W2980974316 hasAuthorship W2980974316A5033517438 @default.
- W2980974316 hasAuthorship W2980974316A5038495851 @default.
- W2980974316 hasAuthorship W2980974316A5040273119 @default.
- W2980974316 hasAuthorship W2980974316A5044114150 @default.