Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980974582> ?p ?o ?g. }
- W2980974582 abstract "Over the last 25 years, techniques based on drift and minorization (d&m) have been mainstays in the convergence analysis of MCMC algorithms. However, results presented herein suggest that d&m may be less useful in the emerging area of convergence complexity analysis, which is the study of how the convergence behavior of Monte Carlo Markov chains scales with sample size, n, and/or number of covariates, p. The problem appears to be that minorization can become a serious liability as dimension increases. Alternative methods of constructing convergence rate bounds (with respect to total variation distance) that do not require minorization are investigated. Based on Wasserstein distances and random mappings, these methods can produce bounds that are substantially more robust to increasing dimension than those based on d&m. The Wasserstein-based bounds are used to develop strong convergence complexity results for MCMC algorithms used in Bayesian probit regression and random effects models in the challenging asymptotic regime where n and p are both large." @default.
- W2980974582 created "2019-10-25" @default.
- W2980974582 creator A5003702810 @default.
- W2980974582 creator A5067917746 @default.
- W2980974582 date "2022-02-01" @default.
- W2980974582 modified "2023-09-26" @default.
- W2980974582 title "Wasserstein-based methods for convergence complexity analysis of MCMC with applications" @default.
- W2980974582 cites W1547388036 @default.
- W2980974582 cites W1572215611 @default.
- W2980974582 cites W1895076743 @default.
- W2980974582 cites W1973738368 @default.
- W2980974582 cites W1988251813 @default.
- W2980974582 cites W1990979853 @default.
- W2980974582 cites W2001074797 @default.
- W2980974582 cites W2011918585 @default.
- W2980974582 cites W2012518296 @default.
- W2980974582 cites W2028493795 @default.
- W2980974582 cites W2031644101 @default.
- W2980974582 cites W2049936270 @default.
- W2980974582 cites W2072175509 @default.
- W2980974582 cites W2077428605 @default.
- W2980974582 cites W2078038392 @default.
- W2980974582 cites W2087667141 @default.
- W2980974582 cites W2095213998 @default.
- W2980974582 cites W2096020040 @default.
- W2980974582 cites W2108306139 @default.
- W2980974582 cites W2122337269 @default.
- W2980974582 cites W2126815340 @default.
- W2980974582 cites W2128598176 @default.
- W2980974582 cites W2146764432 @default.
- W2980974582 cites W2164740108 @default.
- W2980974582 cites W2289554388 @default.
- W2980974582 cites W2798428389 @default.
- W2980974582 cites W2963254535 @default.
- W2980974582 cites W2963937909 @default.
- W2980974582 cites W2972965199 @default.
- W2980974582 cites W3098697903 @default.
- W2980974582 cites W3100110387 @default.
- W2980974582 cites W3102299550 @default.
- W2980974582 cites W3199667312 @default.
- W2980974582 cites W3201118272 @default.
- W2980974582 cites W4205537960 @default.
- W2980974582 cites W4245427736 @default.
- W2980974582 cites W4254810904 @default.
- W2980974582 cites W4302617909 @default.
- W2980974582 doi "https://doi.org/10.1214/21-aap1673" @default.
- W2980974582 hasPublicationYear "2022" @default.
- W2980974582 type Work @default.
- W2980974582 sameAs 2980974582 @default.
- W2980974582 citedByCount "7" @default.
- W2980974582 countsByYear W29809745822019 @default.
- W2980974582 countsByYear W29809745822020 @default.
- W2980974582 countsByYear W29809745822021 @default.
- W2980974582 countsByYear W29809745822022 @default.
- W2980974582 countsByYear W29809745822023 @default.
- W2980974582 crossrefType "journal-article" @default.
- W2980974582 hasAuthorship W2980974582A5003702810 @default.
- W2980974582 hasAuthorship W2980974582A5067917746 @default.
- W2980974582 hasBestOaLocation W29809745822 @default.
- W2980974582 hasConcept C105795698 @default.
- W2980974582 hasConcept C107673813 @default.
- W2980974582 hasConcept C111350023 @default.
- W2980974582 hasConcept C11413529 @default.
- W2980974582 hasConcept C114614502 @default.
- W2980974582 hasConcept C119043178 @default.
- W2980974582 hasConcept C122123141 @default.
- W2980974582 hasConcept C126255220 @default.
- W2980974582 hasConcept C162324750 @default.
- W2980974582 hasConcept C19499675 @default.
- W2980974582 hasConcept C26517878 @default.
- W2980974582 hasConcept C2777303404 @default.
- W2980974582 hasConcept C28826006 @default.
- W2980974582 hasConcept C33676613 @default.
- W2980974582 hasConcept C33923547 @default.
- W2980974582 hasConcept C38652104 @default.
- W2980974582 hasConcept C41008148 @default.
- W2980974582 hasConcept C50522688 @default.
- W2980974582 hasConcept C57869625 @default.
- W2980974582 hasConcept C62100291 @default.
- W2980974582 hasConcept C95763700 @default.
- W2980974582 hasConcept C98763669 @default.
- W2980974582 hasConceptScore W2980974582C105795698 @default.
- W2980974582 hasConceptScore W2980974582C107673813 @default.
- W2980974582 hasConceptScore W2980974582C111350023 @default.
- W2980974582 hasConceptScore W2980974582C11413529 @default.
- W2980974582 hasConceptScore W2980974582C114614502 @default.
- W2980974582 hasConceptScore W2980974582C119043178 @default.
- W2980974582 hasConceptScore W2980974582C122123141 @default.
- W2980974582 hasConceptScore W2980974582C126255220 @default.
- W2980974582 hasConceptScore W2980974582C162324750 @default.
- W2980974582 hasConceptScore W2980974582C19499675 @default.
- W2980974582 hasConceptScore W2980974582C26517878 @default.
- W2980974582 hasConceptScore W2980974582C2777303404 @default.
- W2980974582 hasConceptScore W2980974582C28826006 @default.
- W2980974582 hasConceptScore W2980974582C33676613 @default.
- W2980974582 hasConceptScore W2980974582C33923547 @default.
- W2980974582 hasConceptScore W2980974582C38652104 @default.
- W2980974582 hasConceptScore W2980974582C41008148 @default.
- W2980974582 hasConceptScore W2980974582C50522688 @default.
- W2980974582 hasConceptScore W2980974582C57869625 @default.