Matches in SemOpenAlex for { <https://semopenalex.org/work/W2980996168> ?p ?o ?g. }
- W2980996168 endingPage "113042" @default.
- W2980996168 startingPage "113042" @default.
- W2980996168 abstract "Portfolio theory is an important foundation for portfolio management which is a well-studied subject yet not fully conquered territory. This paper proposes a mixed method consisting of long short-term memory networks and mean-variance model for optimal portfolio formation in conjunction with the asset preselection, in which long-term dependences of financial time-series data can be captured. The experiment uses a large volume of sample data from the UK Stock Exchange 100 Index between March 1994 and March 2019. In the first stage, long short-term memory networks are used to forecast the return of assets and select assets with higher potential returns. After comparing the outcomes of the long short-term memory networks against support vector machine, random forest, deep neural networks, and autoregressive integrated moving average model, we discover that long short-term memory networks are appropriate for financial time-series forecasting, to beat the other benchmark models by a very clear margin. In the second stage, based on selected assets with higher returns, the mean-variance model is applied for portfolio optimisation. The validation of this methodology is carried out by comparing the proposed model with the other five baseline strategies, to which the proposed model clearly outperforms others in terms of the cumulative return per year, Sharpe ratio per triennium as well as average return to the risk per month of each triennium. i.e. potential returns and risks." @default.
- W2980996168 created "2019-10-25" @default.
- W2980996168 creator A5030834049 @default.
- W2980996168 creator A5064701784 @default.
- W2980996168 creator A5076360588 @default.
- W2980996168 creator A5081801618 @default.
- W2980996168 date "2020-04-01" @default.
- W2980996168 modified "2023-10-12" @default.
- W2980996168 title "Portfolio formation with preselection using deep learning from long-term financial data" @default.
- W2980996168 cites W1086310491 @default.
- W2980996168 cites W1689711448 @default.
- W2980996168 cites W1935715103 @default.
- W2980996168 cites W1970872742 @default.
- W2980996168 cites W1973445088 @default.
- W2980996168 cites W1980223370 @default.
- W2980996168 cites W1980836123 @default.
- W2980996168 cites W1984697146 @default.
- W2980996168 cites W1988899076 @default.
- W2980996168 cites W1989074947 @default.
- W2980996168 cites W2014341469 @default.
- W2980996168 cites W2025053102 @default.
- W2980996168 cites W2025291942 @default.
- W2980996168 cites W2026430219 @default.
- W2980996168 cites W2032475783 @default.
- W2980996168 cites W2034905288 @default.
- W2980996168 cites W2053615983 @default.
- W2980996168 cites W2062229217 @default.
- W2980996168 cites W2064675550 @default.
- W2980996168 cites W2069904436 @default.
- W2980996168 cites W2079735306 @default.
- W2980996168 cites W2080747316 @default.
- W2980996168 cites W2090874083 @default.
- W2980996168 cites W2100495367 @default.
- W2980996168 cites W2109151701 @default.
- W2980996168 cites W2125067373 @default.
- W2980996168 cites W2144787803 @default.
- W2980996168 cites W2145049520 @default.
- W2980996168 cites W2148675883 @default.
- W2980996168 cites W2179043097 @default.
- W2980996168 cites W222543348 @default.
- W2980996168 cites W2294467502 @default.
- W2980996168 cites W2472781479 @default.
- W2980996168 cites W2527280779 @default.
- W2980996168 cites W2599699595 @default.
- W2980996168 cites W2607162077 @default.
- W2980996168 cites W2617567983 @default.
- W2980996168 cites W2624385633 @default.
- W2980996168 cites W2625101268 @default.
- W2980996168 cites W2734777338 @default.
- W2980996168 cites W2762466482 @default.
- W2980996168 cites W2808626748 @default.
- W2980996168 cites W2865675487 @default.
- W2980996168 cites W2886249837 @default.
- W2980996168 cites W2889059162 @default.
- W2980996168 cites W2889295492 @default.
- W2980996168 cites W2900880305 @default.
- W2980996168 cites W2919115771 @default.
- W2980996168 cites W2963070656 @default.
- W2980996168 cites W2970016095 @default.
- W2980996168 cites W3121452939 @default.
- W2980996168 cites W3121638816 @default.
- W2980996168 cites W3122010751 @default.
- W2980996168 cites W3125197519 @default.
- W2980996168 cites W4240805545 @default.
- W2980996168 doi "https://doi.org/10.1016/j.eswa.2019.113042" @default.
- W2980996168 hasPublicationYear "2020" @default.
- W2980996168 type Work @default.
- W2980996168 sameAs 2980996168 @default.
- W2980996168 citedByCount "83" @default.
- W2980996168 countsByYear W29809961682020 @default.
- W2980996168 countsByYear W29809961682021 @default.
- W2980996168 countsByYear W29809961682022 @default.
- W2980996168 countsByYear W29809961682023 @default.
- W2980996168 crossrefType "journal-article" @default.
- W2980996168 hasAuthorship W2980996168A5030834049 @default.
- W2980996168 hasAuthorship W2980996168A5064701784 @default.
- W2980996168 hasAuthorship W2980996168A5076360588 @default.
- W2980996168 hasAuthorship W2980996168A5081801618 @default.
- W2980996168 hasBestOaLocation W29809961682 @default.
- W2980996168 hasConcept C10138342 @default.
- W2980996168 hasConcept C104946779 @default.
- W2980996168 hasConcept C121332964 @default.
- W2980996168 hasConcept C13280743 @default.
- W2980996168 hasConcept C139819358 @default.
- W2980996168 hasConcept C139938925 @default.
- W2980996168 hasConcept C149782125 @default.
- W2980996168 hasConcept C151730666 @default.
- W2980996168 hasConcept C15952604 @default.
- W2980996168 hasConcept C159877910 @default.
- W2980996168 hasConcept C162324750 @default.
- W2980996168 hasConcept C185798385 @default.
- W2980996168 hasConcept C187736073 @default.
- W2980996168 hasConcept C202655437 @default.
- W2980996168 hasConcept C205649164 @default.
- W2980996168 hasConcept C2780299701 @default.
- W2980996168 hasConcept C2780762169 @default.
- W2980996168 hasConcept C2780821815 @default.
- W2980996168 hasConcept C41008148 @default.