Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981001892> ?p ?o ?g. }
- W2981001892 abstract "Background and purpose: Adaptive radiotherapy (ART) can compensate for the dosimetric impacts induced by anatomic and geometric variations in patients with nasopharyngeal carcinoma (NPC); Yet, the need for ART can only be assessed during the radiation treatment and the implementation of ART is resource intensive. Therefore, we aimed to determine tumoral biomarkers using pre-treatment MR images for predicting ART eligibility in NPC patients prior to the start of treatment. Methods: Seventy patients with biopsy-proven NPC (Stage II-IVB) in 2015 were enrolled into this retrospective study. Pre-treatment contrast-enhanced T1-w (CET1-w), T2-w MR images were processed and filtered using Laplacian of Gaussian (LoG) filter before radiomic features extraction. A total of 479 radiomics features, including the first-order (n=90), shape (n=14) and texture features (n=375), were initially extracted from Gross-Tumor-Volume of primary tumor (GTVnp) using CET1-w, T2-w MR images. Patients were randomly divided into a training set (n=51) and testing set (n=19). The least absolute shrinkage and selection operator (LASSO) logistic regression model was applied for radiomic model construction in training set to select the most predictive features to predict patients who were replanned and assessed in the testing set. A double cross-validation approach of 100 resampled iterations with three-fold nested cross-validation was employed in LASSO during model construction. The predictive performance of each model was evaluated using the area under the receiver operator characteristic (ROC) curve (AUC). Results: In the present cohort, 13 of 70 patients (18.6%) underwent ART. Average AUCs in training and testing sets were 0.962 (95%CI 0.961-0.963) and 0.852 (95%CI 0.847-0.857) with 8 selected features for CET1-w model; 0.895 (95%CI 0.893-0.896) and 0.750 (95%CI 0.745-0.755) with 6 selected features for T2-w model; and 0.984 (95%CI 0.983-0.984) and 0.930 (95%CI 0.928-0.933) with 6 selected features for joint T1-T2 model, respectively. In general, the joint T1-T2 model outperformed either CET1-w or T2-w model alone. Conclusions: Our study successfully showed promising capability of MRI-based radiomics features for pre-treatment identification of ART eligibility in NPC patients." @default.
- W2981001892 created "2019-10-25" @default.
- W2981001892 creator A5001376315 @default.
- W2981001892 creator A5002788385 @default.
- W2981001892 creator A5009657374 @default.
- W2981001892 creator A5009777873 @default.
- W2981001892 creator A5018457724 @default.
- W2981001892 creator A5025281944 @default.
- W2981001892 creator A5033694774 @default.
- W2981001892 creator A5043814821 @default.
- W2981001892 creator A5046843769 @default.
- W2981001892 creator A5049295332 @default.
- W2981001892 creator A5052884545 @default.
- W2981001892 creator A5058399856 @default.
- W2981001892 creator A5059587245 @default.
- W2981001892 creator A5059931895 @default.
- W2981001892 creator A5078472634 @default.
- W2981001892 creator A5087198126 @default.
- W2981001892 creator A5088902902 @default.
- W2981001892 creator A5089873773 @default.
- W2981001892 date "2019-10-16" @default.
- W2981001892 modified "2023-10-16" @default.
- W2981001892 title "Pretreatment Prediction of Adaptive Radiation Therapy Eligibility Using MRI-Based Radiomics for Advanced Nasopharyngeal Carcinoma Patients" @default.
- W2981001892 cites W1441182425 @default.
- W2981001892 cites W1510982004 @default.
- W2981001892 cites W1550967150 @default.
- W2981001892 cites W1977212445 @default.
- W2981001892 cites W1995788949 @default.
- W2981001892 cites W2007234956 @default.
- W2981001892 cites W2021070501 @default.
- W2981001892 cites W2022394093 @default.
- W2981001892 cites W2044110153 @default.
- W2981001892 cites W2071038583 @default.
- W2981001892 cites W2078487508 @default.
- W2981001892 cites W2078664228 @default.
- W2981001892 cites W2104633732 @default.
- W2981001892 cites W2111077501 @default.
- W2981001892 cites W2124126995 @default.
- W2981001892 cites W2126700386 @default.
- W2981001892 cites W2128739912 @default.
- W2981001892 cites W2132857134 @default.
- W2981001892 cites W2137932619 @default.
- W2981001892 cites W2142504798 @default.
- W2981001892 cites W2591992783 @default.
- W2981001892 cites W2622758479 @default.
- W2981001892 cites W2739990198 @default.
- W2981001892 cites W2749284244 @default.
- W2981001892 cites W2763355946 @default.
- W2981001892 cites W2767233816 @default.
- W2981001892 cites W2770000502 @default.
- W2981001892 cites W2883453212 @default.
- W2981001892 cites W2900803580 @default.
- W2981001892 cites W2903580145 @default.
- W2981001892 cites W2913160101 @default.
- W2981001892 doi "https://doi.org/10.3389/fonc.2019.01050" @default.
- W2981001892 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6805774" @default.
- W2981001892 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31681588" @default.
- W2981001892 hasPublicationYear "2019" @default.
- W2981001892 type Work @default.
- W2981001892 sameAs 2981001892 @default.
- W2981001892 citedByCount "36" @default.
- W2981001892 countsByYear W29810018922020 @default.
- W2981001892 countsByYear W29810018922021 @default.
- W2981001892 countsByYear W29810018922022 @default.
- W2981001892 countsByYear W29810018922023 @default.
- W2981001892 crossrefType "journal-article" @default.
- W2981001892 hasAuthorship W2981001892A5001376315 @default.
- W2981001892 hasAuthorship W2981001892A5002788385 @default.
- W2981001892 hasAuthorship W2981001892A5009657374 @default.
- W2981001892 hasAuthorship W2981001892A5009777873 @default.
- W2981001892 hasAuthorship W2981001892A5018457724 @default.
- W2981001892 hasAuthorship W2981001892A5025281944 @default.
- W2981001892 hasAuthorship W2981001892A5033694774 @default.
- W2981001892 hasAuthorship W2981001892A5043814821 @default.
- W2981001892 hasAuthorship W2981001892A5046843769 @default.
- W2981001892 hasAuthorship W2981001892A5049295332 @default.
- W2981001892 hasAuthorship W2981001892A5052884545 @default.
- W2981001892 hasAuthorship W2981001892A5058399856 @default.
- W2981001892 hasAuthorship W2981001892A5059587245 @default.
- W2981001892 hasAuthorship W2981001892A5059931895 @default.
- W2981001892 hasAuthorship W2981001892A5078472634 @default.
- W2981001892 hasAuthorship W2981001892A5087198126 @default.
- W2981001892 hasAuthorship W2981001892A5088902902 @default.
- W2981001892 hasAuthorship W2981001892A5089873773 @default.
- W2981001892 hasBestOaLocation W29810018921 @default.
- W2981001892 hasConcept C126322002 @default.
- W2981001892 hasConcept C126838900 @default.
- W2981001892 hasConcept C136764020 @default.
- W2981001892 hasConcept C151956035 @default.
- W2981001892 hasConcept C154945302 @default.
- W2981001892 hasConcept C163500349 @default.
- W2981001892 hasConcept C2778559731 @default.
- W2981001892 hasConcept C2778997737 @default.
- W2981001892 hasConcept C2989005 @default.
- W2981001892 hasConcept C37616216 @default.
- W2981001892 hasConcept C41008148 @default.
- W2981001892 hasConcept C509974204 @default.
- W2981001892 hasConcept C58471807 @default.
- W2981001892 hasConcept C71924100 @default.
- W2981001892 hasConceptScore W2981001892C126322002 @default.