Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981012960> ?p ?o ?g. }
- W2981012960 endingPage "27" @default.
- W2981012960 startingPage "1" @default.
- W2981012960 abstract "Hardware implementations of Artificial Neural Networks (ANNs) using conventional binary arithmetic units are computationally expensive, energy-intensive, and have large area overheads. Stochastic Computing (SC) is an emerging paradigm that replaces these conventional units with simple logic circuits and is particularly suitable for fault-tolerant applications. We propose an energy-efficient use of Magnetic Tunnel Junctions (MTJs), a spintronic device that exhibits probabilistic switching behavior, as Stochastic Number Generators (SNGs), which forms the basis of our NN implementation in the SC domain. Further, the error resilience of target applications of NNs allows approximating the synaptic weights in our MTJ-based NN implementation, in ways brought about by properties of the MTJ-SNG, to achieve energy-efficiency. An algorithm is designed that, given an error tolerance, can perform such approximations in a single-layer NN in an optimal way owing to the convexity of the problem formulation. We then use this algorithm and develop a heuristic approach for approximating multi-layer NNs. Classification problems were evaluated on the optimized NNs and results showed substantial savings in energy for little loss in accuracy." @default.
- W2981012960 created "2019-10-25" @default.
- W2981012960 creator A5013349608 @default.
- W2981012960 creator A5089770783 @default.
- W2981012960 date "2019-10-15" @default.
- W2981012960 modified "2023-10-18" @default.
- W2981012960 title "Energy-efficient Design of MTJ-based Neural Networks with Stochastic Computing" @default.
- W2981012960 cites W1599534361 @default.
- W2981012960 cites W1968016286 @default.
- W2981012960 cites W1972841535 @default.
- W2981012960 cites W1976740300 @default.
- W2981012960 cites W1976990135 @default.
- W2981012960 cites W1993927936 @default.
- W2981012960 cites W1995884161 @default.
- W2981012960 cites W1998917233 @default.
- W2981012960 cites W1999802284 @default.
- W2981012960 cites W2003056114 @default.
- W2981012960 cites W2020217519 @default.
- W2981012960 cites W2032548797 @default.
- W2981012960 cites W2042076387 @default.
- W2981012960 cites W2048862740 @default.
- W2981012960 cites W2080219894 @default.
- W2981012960 cites W2096445739 @default.
- W2981012960 cites W2101765144 @default.
- W2981012960 cites W2105827747 @default.
- W2981012960 cites W2129868601 @default.
- W2981012960 cites W2143987902 @default.
- W2981012960 cites W2148267286 @default.
- W2981012960 cites W2151770284 @default.
- W2981012960 cites W2290548492 @default.
- W2981012960 cites W2402098947 @default.
- W2981012960 cites W2404559947 @default.
- W2981012960 cites W2491625531 @default.
- W2981012960 cites W2522548197 @default.
- W2981012960 cites W2533121491 @default.
- W2981012960 cites W2546662845 @default.
- W2981012960 cites W2549630556 @default.
- W2981012960 cites W2597215741 @default.
- W2981012960 cites W2611984215 @default.
- W2981012960 cites W2613305001 @default.
- W2981012960 cites W2762731122 @default.
- W2981012960 cites W2799069698 @default.
- W2981012960 cites W2908853553 @default.
- W2981012960 cites W2913872649 @default.
- W2981012960 cites W2927803337 @default.
- W2981012960 cites W2954145425 @default.
- W2981012960 cites W2962948996 @default.
- W2981012960 cites W2963592983 @default.
- W2981012960 cites W2963935236 @default.
- W2981012960 cites W4236363946 @default.
- W2981012960 cites W4247959538 @default.
- W2981012960 cites W913072106 @default.
- W2981012960 doi "https://doi.org/10.1145/3359622" @default.
- W2981012960 hasPublicationYear "2019" @default.
- W2981012960 type Work @default.
- W2981012960 sameAs 2981012960 @default.
- W2981012960 citedByCount "6" @default.
- W2981012960 countsByYear W29810129602020 @default.
- W2981012960 countsByYear W29810129602021 @default.
- W2981012960 countsByYear W29810129602022 @default.
- W2981012960 countsByYear W29810129602023 @default.
- W2981012960 crossrefType "journal-article" @default.
- W2981012960 hasAuthorship W2981012960A5013349608 @default.
- W2981012960 hasAuthorship W2981012960A5089770783 @default.
- W2981012960 hasBestOaLocation W29810129601 @default.
- W2981012960 hasConcept C105795698 @default.
- W2981012960 hasConcept C113775141 @default.
- W2981012960 hasConcept C11413529 @default.
- W2981012960 hasConcept C120314980 @default.
- W2981012960 hasConcept C121332964 @default.
- W2981012960 hasConcept C127413603 @default.
- W2981012960 hasConcept C13280743 @default.
- W2981012960 hasConcept C154945302 @default.
- W2981012960 hasConcept C173801870 @default.
- W2981012960 hasConcept C178790620 @default.
- W2981012960 hasConcept C185592680 @default.
- W2981012960 hasConcept C185798385 @default.
- W2981012960 hasConcept C186370098 @default.
- W2981012960 hasConcept C205649164 @default.
- W2981012960 hasConcept C24326235 @default.
- W2981012960 hasConcept C2779227376 @default.
- W2981012960 hasConcept C2779585090 @default.
- W2981012960 hasConcept C2780971903 @default.
- W2981012960 hasConcept C33923547 @default.
- W2981012960 hasConcept C41008148 @default.
- W2981012960 hasConcept C49937458 @default.
- W2981012960 hasConcept C50644808 @default.
- W2981012960 hasConcept C56202322 @default.
- W2981012960 hasConcept C63540848 @default.
- W2981012960 hasConcept C97355855 @default.
- W2981012960 hasConceptScore W2981012960C105795698 @default.
- W2981012960 hasConceptScore W2981012960C113775141 @default.
- W2981012960 hasConceptScore W2981012960C11413529 @default.
- W2981012960 hasConceptScore W2981012960C120314980 @default.
- W2981012960 hasConceptScore W2981012960C121332964 @default.
- W2981012960 hasConceptScore W2981012960C127413603 @default.
- W2981012960 hasConceptScore W2981012960C13280743 @default.
- W2981012960 hasConceptScore W2981012960C154945302 @default.