Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981048208> ?p ?o ?g. }
- W2981048208 endingPage "116289" @default.
- W2981048208 startingPage "116289" @default.
- W2981048208 abstract "One of the most controversial practices in resting-state fMRI functional connectivity studies is whether or not to regress out the global average brain signal (GS) during artifact removal. Some groups have argued that it is absolutely essential to regress out the GS in order to fully remove head motion, respiration, and other global imaging artifacts. Others have argued that removing the GS distorts the resulting correlation matrices and inappropriately alters the results of group comparisons and relationships to behavior. At the core of this argument is the assessment of dimensionality in terms of the number of brain networks with uncorrelated time series. If the dimensionality is high, then the distortions due to GS removal could be effectively negligible. In the current paper, we examine the dimensionality of resting-state fMRI data using principal component analyses (PCA) and network clustering analyses. In two independent datasets (Set 1: N = 62, Set 2: N = 32), scree plots of the eigenvalues level off at or prior to 10 principal components, with prominent elbows at 3 and 7 components. While network clustering analyses have previously demonstrated that numerous networks can be distinguished with high thresholding of the voxel-wise correlation matrices, lower thresholding reveals a lower-dimensional hierarchical structure, with the first prominent branch at 2 networks (corresponding to the previously described “task-positive/task-negative” distinction) and further stable subdivisions at 4, 7 and 17. Since inter-correlated time series within these larger branches do not cancel to zero when averaged, the hierarchical nature of the correlation structure results in low effective dimensionality. Consistent with this, partial correlation analyses revealed that network-specific variance remains present in the GS at each level of the hierarchy, accounting for at least 14–18% of the overall GS variance in each dataset. These results demonstrate that GS regression is expected to remove substantial portions of network-specific brain signals along with artifacts, not simply whole-brain signals corresponding to arousal levels. We highlight alternative means of controlling for residual global artifacts when not removing the GS." @default.
- W2981048208 created "2019-10-25" @default.
- W2981048208 creator A5041267159 @default.
- W2981048208 creator A5067576846 @default.
- W2981048208 creator A5068483147 @default.
- W2981048208 date "2020-01-01" @default.
- W2981048208 modified "2023-10-16" @default.
- W2981048208 title "Brain networks, dimensionality, and global signal averaging in resting-state fMRI: Hierarchical network structure results in low-dimensional spatiotemporal dynamics" @default.
- W2981048208 cites W1743429370 @default.
- W2981048208 cites W1760829075 @default.
- W2981048208 cites W1820509982 @default.
- W2981048208 cites W1966782946 @default.
- W2981048208 cites W1972336901 @default.
- W2981048208 cites W1972690852 @default.
- W2981048208 cites W1973776237 @default.
- W2981048208 cites W1975008523 @default.
- W2981048208 cites W1980527160 @default.
- W2981048208 cites W1987777969 @default.
- W2981048208 cites W1989848202 @default.
- W2981048208 cites W1990134753 @default.
- W2981048208 cites W1996881001 @default.
- W2981048208 cites W2004293194 @default.
- W2981048208 cites W2007318901 @default.
- W2981048208 cites W2033865693 @default.
- W2981048208 cites W2041127567 @default.
- W2981048208 cites W2044423747 @default.
- W2981048208 cites W2045334960 @default.
- W2981048208 cites W2048857243 @default.
- W2981048208 cites W2049325056 @default.
- W2981048208 cites W2065895453 @default.
- W2981048208 cites W2068782491 @default.
- W2981048208 cites W2071300176 @default.
- W2981048208 cites W2073887580 @default.
- W2981048208 cites W2079247946 @default.
- W2981048208 cites W2081498685 @default.
- W2981048208 cites W2085561705 @default.
- W2981048208 cites W2089572795 @default.
- W2981048208 cites W2101219946 @default.
- W2981048208 cites W2104482304 @default.
- W2981048208 cites W2107499714 @default.
- W2981048208 cites W2117140276 @default.
- W2981048208 cites W2122457251 @default.
- W2981048208 cites W2128618971 @default.
- W2981048208 cites W2131681506 @default.
- W2981048208 cites W2132175842 @default.
- W2981048208 cites W2133097426 @default.
- W2981048208 cites W2135475851 @default.
- W2981048208 cites W2136435696 @default.
- W2981048208 cites W2138092999 @default.
- W2981048208 cites W2147546041 @default.
- W2981048208 cites W2154608643 @default.
- W2981048208 cites W2160172778 @default.
- W2981048208 cites W2163124472 @default.
- W2981048208 cites W2163274894 @default.
- W2981048208 cites W2164998314 @default.
- W2981048208 cites W2167822639 @default.
- W2981048208 cites W2167868121 @default.
- W2981048208 cites W2169787465 @default.
- W2981048208 cites W2180390996 @default.
- W2981048208 cites W2191264719 @default.
- W2981048208 cites W2294798173 @default.
- W2981048208 cites W2334220226 @default.
- W2981048208 cites W2334928762 @default.
- W2981048208 cites W2409584775 @default.
- W2981048208 cites W2499800833 @default.
- W2981048208 cites W2526989977 @default.
- W2981048208 cites W2537382818 @default.
- W2981048208 cites W2557111525 @default.
- W2981048208 cites W2588517580 @default.
- W2981048208 cites W2597348720 @default.
- W2981048208 cites W2755454636 @default.
- W2981048208 cites W2789716821 @default.
- W2981048208 cites W2791194758 @default.
- W2981048208 cites W2953090092 @default.
- W2981048208 cites W4238805501 @default.
- W2981048208 cites W4295750005 @default.
- W2981048208 doi "https://doi.org/10.1016/j.neuroimage.2019.116289" @default.
- W2981048208 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6919311" @default.
- W2981048208 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31629827" @default.
- W2981048208 hasPublicationYear "2020" @default.
- W2981048208 type Work @default.
- W2981048208 sameAs 2981048208 @default.
- W2981048208 citedByCount "39" @default.
- W2981048208 countsByYear W29810482082020 @default.
- W2981048208 countsByYear W29810482082021 @default.
- W2981048208 countsByYear W29810482082022 @default.
- W2981048208 countsByYear W29810482082023 @default.
- W2981048208 crossrefType "journal-article" @default.
- W2981048208 hasAuthorship W2981048208A5041267159 @default.
- W2981048208 hasAuthorship W2981048208A5067576846 @default.
- W2981048208 hasAuthorship W2981048208A5068483147 @default.
- W2981048208 hasBestOaLocation W29810482081 @default.
- W2981048208 hasConcept C111030470 @default.
- W2981048208 hasConcept C114614502 @default.
- W2981048208 hasConcept C115961682 @default.
- W2981048208 hasConcept C123757187 @default.
- W2981048208 hasConcept C153180895 @default.
- W2981048208 hasConcept C154945302 @default.