Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981074787> ?p ?o ?g. }
- W2981074787 endingPage "6588" @default.
- W2981074787 startingPage "6573" @default.
- W2981074787 abstract "Medical and health text documents pose a challenge for data handling and retrieving the relevant and meaningful documents. Automatically retrieval of significant knowledge with a better understanding of medical and health documents is a challenging task. One popular approach for thematically unders tand the medical and health text documents and finding the topics from these documents is topic modeling. In this research, we propose a novel topic modeling approach Fuzzy k-means latent semantic analysis (FKLSA) by using the fuzzy clustering. Our method generates local and global term frequencies through the bag of words (BOW) model. Principal component analysis is used for removing high dimensionality negative impact on global term weighting. Previous work shows that in medical and health documents redundancy issue has a negative impact on the quality of text mining. Therefore, the main achievement of FKLSA is the handling of the redundancy issue in medical and text documents and discover semantically more precise topics. FKLSA is socially utilized for finding the themes from medical and health text corpus. These topics are further used for text classification and clustering tasks in text mining. Experimental results show that FKLSA performs better than LDA and RedLDA for redundant corpora. FKLSA’s time performance is also stable with an increase in number of topics and thus better than LDA and LSA on a big twitter heath dataset. Quantitative evaluations of the real-world dataset for health and medical documents show that FKLSA gives a higher performance as compared to state-of-the-art topic models like Latent Dirichlet allocation and Latent semantic analysis." @default.
- W2981074787 created "2019-10-25" @default.
- W2981074787 creator A5012673747 @default.
- W2981074787 creator A5037162400 @default.
- W2981074787 creator A5081273018 @default.
- W2981074787 date "2019-11-22" @default.
- W2981074787 modified "2023-09-26" @default.
- W2981074787 title "A novel fuzzy k-means latent semantic analysis (FKLSA) approach for topic modeling over medical and health text corpora" @default.
- W2981074787 cites W1482260847 @default.
- W2981074787 cites W1659702034 @default.
- W2981074787 cites W1873936197 @default.
- W2981074787 cites W1919152067 @default.
- W2981074787 cites W1976993894 @default.
- W2981074787 cites W1978394996 @default.
- W2981074787 cites W1979972308 @default.
- W2981074787 cites W1980867644 @default.
- W2981074787 cites W1984340934 @default.
- W2981074787 cites W1996747841 @default.
- W2981074787 cites W2001082470 @default.
- W2981074787 cites W2001322210 @default.
- W2981074787 cites W2012779036 @default.
- W2981074787 cites W2016127234 @default.
- W2981074787 cites W2019652504 @default.
- W2981074787 cites W2024203939 @default.
- W2981074787 cites W2029912695 @default.
- W2981074787 cites W2042980227 @default.
- W2981074787 cites W2054275537 @default.
- W2981074787 cites W2055699623 @default.
- W2981074787 cites W2060814138 @default.
- W2981074787 cites W2065691025 @default.
- W2981074787 cites W2065753705 @default.
- W2981074787 cites W2071306594 @default.
- W2981074787 cites W2079969507 @default.
- W2981074787 cites W2081097461 @default.
- W2981074787 cites W2082369396 @default.
- W2981074787 cites W2085487226 @default.
- W2981074787 cites W2086706273 @default.
- W2981074787 cites W2095290023 @default.
- W2981074787 cites W2102046030 @default.
- W2981074787 cites W2109619915 @default.
- W2981074787 cites W2128728535 @default.
- W2981074787 cites W2133576408 @default.
- W2981074787 cites W2135790056 @default.
- W2981074787 cites W2143459909 @default.
- W2981074787 cites W2146408445 @default.
- W2981074787 cites W2150769253 @default.
- W2981074787 cites W2152550237 @default.
- W2981074787 cites W2158903965 @default.
- W2981074787 cites W2158963591 @default.
- W2981074787 cites W2170471032 @default.
- W2981074787 cites W2367339491 @default.
- W2981074787 cites W2521579474 @default.
- W2981074787 cites W2616732879 @default.
- W2981074787 cites W2760273722 @default.
- W2981074787 cites W2793300267 @default.
- W2981074787 cites W4231779508 @default.
- W2981074787 doi "https://doi.org/10.3233/jifs-182776" @default.
- W2981074787 hasPublicationYear "2019" @default.
- W2981074787 type Work @default.
- W2981074787 sameAs 2981074787 @default.
- W2981074787 citedByCount "12" @default.
- W2981074787 countsByYear W29810747872020 @default.
- W2981074787 countsByYear W29810747872021 @default.
- W2981074787 countsByYear W29810747872022 @default.
- W2981074787 countsByYear W29810747872023 @default.
- W2981074787 crossrefType "journal-article" @default.
- W2981074787 hasAuthorship W2981074787A5012673747 @default.
- W2981074787 hasAuthorship W2981074787A5037162400 @default.
- W2981074787 hasAuthorship W2981074787A5081273018 @default.
- W2981074787 hasConcept C111919701 @default.
- W2981074787 hasConcept C126838900 @default.
- W2981074787 hasConcept C152124472 @default.
- W2981074787 hasConcept C154945302 @default.
- W2981074787 hasConcept C170133592 @default.
- W2981074787 hasConcept C171686336 @default.
- W2981074787 hasConcept C177937566 @default.
- W2981074787 hasConcept C183115368 @default.
- W2981074787 hasConcept C204321447 @default.
- W2981074787 hasConcept C23123220 @default.
- W2981074787 hasConcept C41008148 @default.
- W2981074787 hasConcept C500882744 @default.
- W2981074787 hasConcept C58166 @default.
- W2981074787 hasConcept C71924100 @default.
- W2981074787 hasConcept C73555534 @default.
- W2981074787 hasConceptScore W2981074787C111919701 @default.
- W2981074787 hasConceptScore W2981074787C126838900 @default.
- W2981074787 hasConceptScore W2981074787C152124472 @default.
- W2981074787 hasConceptScore W2981074787C154945302 @default.
- W2981074787 hasConceptScore W2981074787C170133592 @default.
- W2981074787 hasConceptScore W2981074787C171686336 @default.
- W2981074787 hasConceptScore W2981074787C177937566 @default.
- W2981074787 hasConceptScore W2981074787C183115368 @default.
- W2981074787 hasConceptScore W2981074787C204321447 @default.
- W2981074787 hasConceptScore W2981074787C23123220 @default.
- W2981074787 hasConceptScore W2981074787C41008148 @default.
- W2981074787 hasConceptScore W2981074787C500882744 @default.
- W2981074787 hasConceptScore W2981074787C58166 @default.
- W2981074787 hasConceptScore W2981074787C71924100 @default.