Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981126078> ?p ?o ?g. }
- W2981126078 endingPage "3903" @default.
- W2981126078 startingPage "3903" @default.
- W2981126078 abstract "Parameter estimation is an important part in the modeling of a hydro-turbine regulation system (HTRS), and the results determine the final accuracy of a model. A hydro-turbine is normally a non-minimum phase system with strong nonlinearity and time-varying parameters. For the parameter estimation of such a nonlinear system, heuristic algorithms are more advantageous than traditional mathematical methods. However, most heuristics based algorithms and their improved versions are not adaptive, which means that the appropriate parameters of an algorithm need to be manually found to keep the algorithm performing optimally in solving similar problems. To solve this problem, an adaptive fuzzy particle swarm optimization (AFPSO) algorithm that dynamically tunes the parameters according to model error is proposed and applied to the parameter estimation of the HTRS. The simulation studies show that the proposed AFPSO contributes to lower model error and higher identification accuracy compared with some traditional heuristic algorithms. Importantly, it avoids a possible deterioration in the performance of an algorithm caused by inappropriate parameter selection." @default.
- W2981126078 created "2019-10-25" @default.
- W2981126078 creator A5015005766 @default.
- W2981126078 creator A5047279814 @default.
- W2981126078 creator A5049813197 @default.
- W2981126078 creator A5065383812 @default.
- W2981126078 creator A5088478996 @default.
- W2981126078 date "2019-10-15" @default.
- W2981126078 modified "2023-10-16" @default.
- W2981126078 title "Accurate Parameter Estimation of a Hydro-Turbine Regulation System Using Adaptive Fuzzy Particle Swarm Optimization" @default.
- W2981126078 cites W1487746315 @default.
- W2981126078 cites W1522440472 @default.
- W2981126078 cites W2004759087 @default.
- W2981126078 cites W2004988719 @default.
- W2981126078 cites W2020414814 @default.
- W2981126078 cites W2021027064 @default.
- W2981126078 cites W2028437524 @default.
- W2981126078 cites W2030758431 @default.
- W2981126078 cites W2031249287 @default.
- W2981126078 cites W2044451664 @default.
- W2981126078 cites W2054878539 @default.
- W2981126078 cites W2068878490 @default.
- W2981126078 cites W2070207746 @default.
- W2981126078 cites W2071519036 @default.
- W2981126078 cites W2072955302 @default.
- W2981126078 cites W2081749411 @default.
- W2981126078 cites W2086877268 @default.
- W2981126078 cites W2087808037 @default.
- W2981126078 cites W2089005940 @default.
- W2981126078 cites W2092766760 @default.
- W2981126078 cites W2096688831 @default.
- W2981126078 cites W2103526888 @default.
- W2981126078 cites W2108388069 @default.
- W2981126078 cites W2112090702 @default.
- W2981126078 cites W2123066915 @default.
- W2981126078 cites W2131183806 @default.
- W2981126078 cites W2133686994 @default.
- W2981126078 cites W2139339670 @default.
- W2981126078 cites W2142305592 @default.
- W2981126078 cites W2144370915 @default.
- W2981126078 cites W2154943049 @default.
- W2981126078 cites W2155005783 @default.
- W2981126078 cites W2168081761 @default.
- W2981126078 cites W2180869853 @default.
- W2981126078 cites W2232368862 @default.
- W2981126078 cites W2461216602 @default.
- W2981126078 cites W2516750579 @default.
- W2981126078 cites W2583922715 @default.
- W2981126078 cites W2611704908 @default.
- W2981126078 cites W2739385057 @default.
- W2981126078 cites W2754881385 @default.
- W2981126078 cites W2767053067 @default.
- W2981126078 cites W2888707334 @default.
- W2981126078 cites W2892289078 @default.
- W2981126078 cites W2915202382 @default.
- W2981126078 cites W2916340702 @default.
- W2981126078 cites W2921283480 @default.
- W2981126078 doi "https://doi.org/10.3390/en12203903" @default.
- W2981126078 hasPublicationYear "2019" @default.
- W2981126078 type Work @default.
- W2981126078 sameAs 2981126078 @default.
- W2981126078 citedByCount "13" @default.
- W2981126078 countsByYear W29811260782020 @default.
- W2981126078 countsByYear W29811260782021 @default.
- W2981126078 countsByYear W29811260782022 @default.
- W2981126078 countsByYear W29811260782023 @default.
- W2981126078 crossrefType "journal-article" @default.
- W2981126078 hasAuthorship W2981126078A5015005766 @default.
- W2981126078 hasAuthorship W2981126078A5047279814 @default.
- W2981126078 hasAuthorship W2981126078A5049813197 @default.
- W2981126078 hasAuthorship W2981126078A5065383812 @default.
- W2981126078 hasAuthorship W2981126078A5088478996 @default.
- W2981126078 hasBestOaLocation W29811260781 @default.
- W2981126078 hasConcept C11413529 @default.
- W2981126078 hasConcept C119247159 @default.
- W2981126078 hasConcept C121332964 @default.
- W2981126078 hasConcept C124101348 @default.
- W2981126078 hasConcept C126255220 @default.
- W2981126078 hasConcept C154945302 @default.
- W2981126078 hasConcept C158622935 @default.
- W2981126078 hasConcept C167928553 @default.
- W2981126078 hasConcept C173801870 @default.
- W2981126078 hasConcept C2775924081 @default.
- W2981126078 hasConcept C2780009758 @default.
- W2981126078 hasConcept C33923547 @default.
- W2981126078 hasConcept C41008148 @default.
- W2981126078 hasConcept C47446073 @default.
- W2981126078 hasConcept C58166 @default.
- W2981126078 hasConcept C62520636 @default.
- W2981126078 hasConcept C85617194 @default.
- W2981126078 hasConceptScore W2981126078C11413529 @default.
- W2981126078 hasConceptScore W2981126078C119247159 @default.
- W2981126078 hasConceptScore W2981126078C121332964 @default.
- W2981126078 hasConceptScore W2981126078C124101348 @default.
- W2981126078 hasConceptScore W2981126078C126255220 @default.
- W2981126078 hasConceptScore W2981126078C154945302 @default.
- W2981126078 hasConceptScore W2981126078C158622935 @default.
- W2981126078 hasConceptScore W2981126078C167928553 @default.