Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981175927> ?p ?o ?g. }
- W2981175927 endingPage "292" @default.
- W2981175927 startingPage "279" @default.
- W2981175927 abstract "Abstract The pathological state of a human body leads to altered biochemical composition of body fluids. Conventional biochemical analysis of body fluids is notable for its low‐informative value in localizing a particular pathology. As an alternative, Raman spectroscopy provides detailed evaluation of blood characteristics at the molecular level. Raman blood spectra are characterized by multicollinearity as well as by the presence of autofluorescence background and noises of different nature. Choice of a proper method for experimental data processing of blood spectra is crucial for obtaining statistically reliable information regarding a pathological process in the body. This study examines different approaches to multidimensional analysis of the various‐size Raman spectral dataset of human blood samples by a cost‐effective Raman setup in a clinical setting. To discriminate blood samples by the pathology type, statistical processing of experimental data is performed by factor analysis , logistic regression , discriminant analysis , classification tree , projection to latent structures discriminant analysis ( PLS‐DA ), and soft independent modeling of class analogies . Comparative analysis of the discussed multivariate methods demonstrates that the PLS‐DA method (sensitivity 0.75, specificity 0.81, and accuracy 0.76) proved to be the most effective for the classification of blood samples by cancer localization. In terms of classification for the presence of hyperproteinemia, the most efficient are the logistic regression method (sensitivity 0.89, specificity 0.99, and accuracy 0.97) and the discriminant analysis method (sensitivity 0.83, specificity 1.0, and accuracy 0.97). In general, the selected multivariate methods could serve as a reliable tool for analyzing spectral characteristics of body fluids." @default.
- W2981175927 created "2019-10-25" @default.
- W2981175927 creator A5001011802 @default.
- W2981175927 creator A5013754227 @default.
- W2981175927 creator A5019596198 @default.
- W2981175927 creator A5035231615 @default.
- W2981175927 creator A5063574002 @default.
- W2981175927 creator A5067432552 @default.
- W2981175927 creator A5075452472 @default.
- W2981175927 creator A5075638427 @default.
- W2981175927 creator A5076994119 @default.
- W2981175927 creator A5081657205 @default.
- W2981175927 date "2019-10-21" @default.
- W2981175927 modified "2023-09-26" @default.
- W2981175927 title "Comparative study of multivariative analysis methods of blood Raman spectra classification" @default.
- W2981175927 cites W1541175366 @default.
- W2981175927 cites W1581201881 @default.
- W2981175927 cites W1599038438 @default.
- W2981175927 cites W1616519449 @default.
- W2981175927 cites W1963638325 @default.
- W2981175927 cites W1969146098 @default.
- W2981175927 cites W1982436785 @default.
- W2981175927 cites W1986297321 @default.
- W2981175927 cites W1996926292 @default.
- W2981175927 cites W2014638731 @default.
- W2981175927 cites W2015896899 @default.
- W2981175927 cites W2021286927 @default.
- W2981175927 cites W2049613048 @default.
- W2981175927 cites W2051205400 @default.
- W2981175927 cites W2072752349 @default.
- W2981175927 cites W2087780185 @default.
- W2981175927 cites W2089181989 @default.
- W2981175927 cites W2091998550 @default.
- W2981175927 cites W2106160987 @default.
- W2981175927 cites W2132651149 @default.
- W2981175927 cites W2169840816 @default.
- W2981175927 cites W2251523529 @default.
- W2981175927 cites W2289006096 @default.
- W2981175927 cites W2361129967 @default.
- W2981175927 cites W2374775902 @default.
- W2981175927 cites W2546396466 @default.
- W2981175927 cites W2557392395 @default.
- W2981175927 cites W2587912562 @default.
- W2981175927 cites W2606314294 @default.
- W2981175927 cites W2621293002 @default.
- W2981175927 cites W2886102928 @default.
- W2981175927 doi "https://doi.org/10.1002/jrs.5762" @default.
- W2981175927 hasPublicationYear "2019" @default.
- W2981175927 type Work @default.
- W2981175927 sameAs 2981175927 @default.
- W2981175927 citedByCount "7" @default.
- W2981175927 countsByYear W29811759272020 @default.
- W2981175927 countsByYear W29811759272021 @default.
- W2981175927 countsByYear W29811759272022 @default.
- W2981175927 crossrefType "journal-article" @default.
- W2981175927 hasAuthorship W2981175927A5001011802 @default.
- W2981175927 hasAuthorship W2981175927A5013754227 @default.
- W2981175927 hasAuthorship W2981175927A5019596198 @default.
- W2981175927 hasAuthorship W2981175927A5035231615 @default.
- W2981175927 hasAuthorship W2981175927A5063574002 @default.
- W2981175927 hasAuthorship W2981175927A5067432552 @default.
- W2981175927 hasAuthorship W2981175927A5075452472 @default.
- W2981175927 hasAuthorship W2981175927A5075638427 @default.
- W2981175927 hasAuthorship W2981175927A5076994119 @default.
- W2981175927 hasAuthorship W2981175927A5081657205 @default.
- W2981175927 hasConcept C105795698 @default.
- W2981175927 hasConcept C120665830 @default.
- W2981175927 hasConcept C121332964 @default.
- W2981175927 hasConcept C127413603 @default.
- W2981175927 hasConcept C151304367 @default.
- W2981175927 hasConcept C151956035 @default.
- W2981175927 hasConcept C153180895 @default.
- W2981175927 hasConcept C154945302 @default.
- W2981175927 hasConcept C161584116 @default.
- W2981175927 hasConcept C185592680 @default.
- W2981175927 hasConcept C21200559 @default.
- W2981175927 hasConcept C24326235 @default.
- W2981175927 hasConcept C27438332 @default.
- W2981175927 hasConcept C33923547 @default.
- W2981175927 hasConcept C38180746 @default.
- W2981175927 hasConcept C40003534 @default.
- W2981175927 hasConcept C41008148 @default.
- W2981175927 hasConcept C43617362 @default.
- W2981175927 hasConcept C69738355 @default.
- W2981175927 hasConceptScore W2981175927C105795698 @default.
- W2981175927 hasConceptScore W2981175927C120665830 @default.
- W2981175927 hasConceptScore W2981175927C121332964 @default.
- W2981175927 hasConceptScore W2981175927C127413603 @default.
- W2981175927 hasConceptScore W2981175927C151304367 @default.
- W2981175927 hasConceptScore W2981175927C151956035 @default.
- W2981175927 hasConceptScore W2981175927C153180895 @default.
- W2981175927 hasConceptScore W2981175927C154945302 @default.
- W2981175927 hasConceptScore W2981175927C161584116 @default.
- W2981175927 hasConceptScore W2981175927C185592680 @default.
- W2981175927 hasConceptScore W2981175927C21200559 @default.
- W2981175927 hasConceptScore W2981175927C24326235 @default.
- W2981175927 hasConceptScore W2981175927C27438332 @default.
- W2981175927 hasConceptScore W2981175927C33923547 @default.