Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981246957> ?p ?o ?g. }
- W2981246957 endingPage "304" @default.
- W2981246957 startingPage "289" @default.
- W2981246957 abstract "The stable isotope compositions of chromium (Cr) are fractionated during magmatic differentiation of lunar mare basalts, which might be attributed to redox-related mineral crystallization. It has yet to be demonstrated whether magmatic differentiation fractionates Cr isotope composition of terrestrial samples. Here, we present high-precision stable Cr isotope measurements, reported as δ53Cr relative to NIST SRM 979, of well-characterized Hawaiian tholeiitic basalts from Koolau, Mauna Kea and Kilauea. The studied Makapuu-stage Koolau lavas have MgO ranging from 6.58 to 21.54 wt.%, and they have homogeneous δ53Cr ranging from −0.21‰ to −0.17‰. Similarly, studied Mauna Kea lavas have MgO ranging from 9.11 to 17.90 wt.%, and they also have homogeneous δ53Cr ranging from −0.17‰ to −0.13‰. Some Makapuu-stage Koolau and Mauna Kea lavas experienced subaerial or submarine alteration. The homogenous δ53Cr within each sample suites implies that the post-magmatic alterations have not significantly changed the Cr isotope compositions of these samples. Conversely, nine Kilauea Iki basalts have MgO ranging from 7.77 to 26.87 wt.% reflecting varying degrees of magmatic differentiation, and they show resolvable Cr isotope variations with δ53Cr ranging from −0.18‰ to 0.00‰. The δ53Cr values of the Kilauea Iki samples are positively correlated with indicators of magmatic differentiation such as Cr and MgO contents, and Mg# values. The most evolved samples have the lightest isotope compositions, whereas the olivine-spinel cumulates display complementary heavy isotope compositions. This fractionation is most likely generated by the crystallization and accumulation of spinel, which is dominated by Cr3+ and, hence, enriched in heavier Cr isotopes relative to the residual melt. At a given MgO content, Kilauea and Mauna Kea lavas, both Kea-trend volcanoes, have higher δ53Cr than Makapuu-stage Koolau lavas, a Loa-trend volcano. This difference might reflect recycling of altered oceanic crusts or redox differences of their magmatic sources, with the mantle source of Makapuu-stage lavas being more reducing. To understand the different Cr isotope fractionation behaviors of terrestrial and extraterrestrial basalts, we present a quantitative model that relates the Cr isotope compositions of basalts from the Earth, the Moon and Vesta, to the crystallization assemblage, the degree of fractional crystallization, and the Cr2+/ΣCr ratios of minerals and melts, which are related to the oxygen fugacity during differentiation. The primitive Hawaiian basaltic magma for Kilauea Iki and Mauna Kea lavas is estimated to have δ53Cr of −0.15‰, which is close to the average value of the BSE (−0.14‰ to −0.12‰). We further speculate that the initial lunar mantle is relatively homogeneous with BSE-like isotope composition (−0.16‰ to −0.09‰). The observed low δ53Cr in lunar mafic rocks is the result of redox-dominated fractional crystallization and accumulation processes of lunar mafic magmas. These magmas might be derived from variable degrees of partial melting of the primitive lunar mantle. Combined with previous results on the variations in Cr valences and contents in silicate melts and minerals related to oxygen fugacity, Cr concentration and isotope composition can serve as a useful oxybarometer for understanding the redox conditions of planetary differentiation and magmatic evolution." @default.
- W2981246957 created "2019-10-25" @default.
- W2981246957 creator A5009568919 @default.
- W2981246957 creator A5010894446 @default.
- W2981246957 creator A5033154003 @default.
- W2981246957 creator A5047666490 @default.
- W2981246957 creator A5059250460 @default.
- W2981246957 creator A5062247714 @default.
- W2981246957 creator A5088827678 @default.
- W2981246957 date "2020-06-01" @default.
- W2981246957 modified "2023-10-17" @default.
- W2981246957 title "Stable chromium isotope fractionation during magmatic differentiation: Insights from Hawaiian basalts and implications for planetary redox conditions" @default.
- W2981246957 cites W1507573241 @default.
- W2981246957 cites W1535709432 @default.
- W2981246957 cites W1540633733 @default.
- W2981246957 cites W1627328041 @default.
- W2981246957 cites W1867119400 @default.
- W2981246957 cites W1900055909 @default.
- W2981246957 cites W1963819833 @default.
- W2981246957 cites W1967180346 @default.
- W2981246957 cites W1973725570 @default.
- W2981246957 cites W1982922846 @default.
- W2981246957 cites W1985317544 @default.
- W2981246957 cites W1991473661 @default.
- W2981246957 cites W1998707404 @default.
- W2981246957 cites W2001022785 @default.
- W2981246957 cites W2001405671 @default.
- W2981246957 cites W2004856555 @default.
- W2981246957 cites W2004918923 @default.
- W2981246957 cites W2005947638 @default.
- W2981246957 cites W2006137489 @default.
- W2981246957 cites W2009314136 @default.
- W2981246957 cites W2012062341 @default.
- W2981246957 cites W2017896872 @default.
- W2981246957 cites W2020140193 @default.
- W2981246957 cites W2022529172 @default.
- W2981246957 cites W2026702639 @default.
- W2981246957 cites W2029330897 @default.
- W2981246957 cites W2033504045 @default.
- W2981246957 cites W2035178582 @default.
- W2981246957 cites W2045038055 @default.
- W2981246957 cites W2053619275 @default.
- W2981246957 cites W2055859870 @default.
- W2981246957 cites W2058314652 @default.
- W2981246957 cites W2061048095 @default.
- W2981246957 cites W2064816062 @default.
- W2981246957 cites W2066760610 @default.
- W2981246957 cites W2067505974 @default.
- W2981246957 cites W2070681936 @default.
- W2981246957 cites W2073867908 @default.
- W2981246957 cites W2075467751 @default.
- W2981246957 cites W2080133469 @default.
- W2981246957 cites W2081677058 @default.
- W2981246957 cites W2083539229 @default.
- W2981246957 cites W2085774570 @default.
- W2981246957 cites W2086250167 @default.
- W2981246957 cites W2086540936 @default.
- W2981246957 cites W2088030015 @default.
- W2981246957 cites W2089364885 @default.
- W2981246957 cites W2098929488 @default.
- W2981246957 cites W2112622604 @default.
- W2981246957 cites W2113566921 @default.
- W2981246957 cites W2118936252 @default.
- W2981246957 cites W2119330075 @default.
- W2981246957 cites W2119563688 @default.
- W2981246957 cites W2124597070 @default.
- W2981246957 cites W2125967350 @default.
- W2981246957 cites W2126171640 @default.
- W2981246957 cites W2126380684 @default.
- W2981246957 cites W2135726163 @default.
- W2981246957 cites W2146383473 @default.
- W2981246957 cites W2150065131 @default.
- W2981246957 cites W2151041036 @default.
- W2981246957 cites W2154403386 @default.
- W2981246957 cites W2187949768 @default.
- W2981246957 cites W2192071194 @default.
- W2981246957 cites W2220846163 @default.
- W2981246957 cites W2232735562 @default.
- W2981246957 cites W2235896559 @default.
- W2981246957 cites W2254957911 @default.
- W2981246957 cites W2272101127 @default.
- W2981246957 cites W2297982662 @default.
- W2981246957 cites W2314308911 @default.
- W2981246957 cites W2315738142 @default.
- W2981246957 cites W2521500440 @default.
- W2981246957 cites W2567094215 @default.
- W2981246957 cites W2585925744 @default.
- W2981246957 cites W2591502295 @default.
- W2981246957 cites W2620956803 @default.
- W2981246957 cites W2769552156 @default.
- W2981246957 cites W2801339905 @default.
- W2981246957 cites W2886463320 @default.
- W2981246957 cites W2887787268 @default.
- W2981246957 cites W2896199428 @default.
- W2981246957 cites W2904578376 @default.
- W2981246957 cites W2965099639 @default.
- W2981246957 cites W4214911971 @default.
- W2981246957 doi "https://doi.org/10.1016/j.gca.2019.10.003" @default.