Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981281803> ?p ?o ?g. }
- W2981281803 endingPage "100060" @default.
- W2981281803 startingPage "100060" @default.
- W2981281803 abstract "Analysis of social media is an emerging method with potential as a tool for disease surveillance. Twitter may offer a route for surveillance by using tweeting habits as a proxy for disease incidence. Previous work has focused on temporal patterns and have proven to be successful. However, the identification of geographical patterns has been limited by a combination of Twitter’s data collection policies and by exploring diseases that have a high prevalence and high levels of awareness with the public. We propose that, by performing a restricted geographical search strategy on a disease with a relatively low incidence, one may be able to explore spatial patterns. Here, Lyme disease in the United Kingdom and the Republic of Ireland is used as a case example. To explore whether the tweeting habits of British and Irish Twitter users matched the known spatio-temporal epidemiology of Lyme disease in these respective countries. All Tweets containing the word ‘Lyme’ were collected between the 1st of July 2017 and the 30th June 2018, restricted by geography (a 375-mile radius around the geographical centre of Great Britain) and by language (English-only tweets). Tweets were removed which referred to locations that included ‘Lyme’ within their name (e.g. Lyme Regis). Only original tweets were analysed. Daily and monthly time series were created and compared to national Lyme disease surveillance figures. A map of the number of Twitter users tweeting about Lyme disease per 100,000 population per local authority was created. This was formerly compared to national surveillance data for England and Wales using an exploratory spatial data analysis approach. During the study period, 13,757 original tweets containing the word ‘Lyme’, and excluding place names relating to Lyme, were collected. The mean number of daily tweets was 38 (range: 12–276). There was strong seasonality with the highest number of tweets in the summer, this matched the known epidemiology of Lyme disease. Of the 5212 of users who tweeted about Lyme disease, 51.8% had a user profile location that could be matched to a local authority in the United Kingdom or Republic of Ireland. The mean number of Twitter users tweeting about Lyme disease per 100,000 population per local authority was 3.7. The areas with the highest incidence were south-west England and the Highlands of Scotland. When comparing these figures to English and Welsh Lyme disease surveillance figures they showed a significant positive spatial correlation (p = 0.002). The tempo-spatial pattern of Twitter users tweeting about Lyme disease matches the known disease epidemiology. The degree of geographical concordance between Twitter users’ locations and national surveillance reports, indicate that Twitter has the potential to be used in to identify potential disease hotspots based on the levels of social media ‘noise’. There is scope for further work to test the robustness of Twitter as an adjunct ‘measure of concern’ disease surveillance tool. However, caution must be taken as national media stories can skew data and Twitter users may not provide reliable facts in the data that they share on the platform." @default.
- W2981281803 created "2019-10-25" @default.
- W2981281803 creator A5008798809 @default.
- W2981281803 creator A5009469614 @default.
- W2981281803 creator A5032109404 @default.
- W2981281803 creator A5049412298 @default.
- W2981281803 creator A5089243910 @default.
- W2981281803 date "2019-01-01" @default.
- W2981281803 modified "2023-10-17" @default.
- W2981281803 title "Mapping tweets to a known disease epidemiology; a case study of Lyme disease in the United Kingdom and Republic of Ireland" @default.
- W2981281803 cites W1979771175 @default.
- W2981281803 cites W2025330985 @default.
- W2981281803 cites W2051964273 @default.
- W2981281803 cites W2078638446 @default.
- W2981281803 cites W2091649252 @default.
- W2981281803 cites W2108972242 @default.
- W2981281803 cites W2116265632 @default.
- W2981281803 cites W2118898434 @default.
- W2981281803 cites W2147194983 @default.
- W2981281803 cites W2244033198 @default.
- W2981281803 cites W2431195019 @default.
- W2981281803 cites W2477032014 @default.
- W2981281803 cites W2603153072 @default.
- W2981281803 cites W2605721770 @default.
- W2981281803 cites W2613404455 @default.
- W2981281803 cites W2751219160 @default.
- W2981281803 cites W2753122118 @default.
- W2981281803 cites W2757989202 @default.
- W2981281803 cites W2765463882 @default.
- W2981281803 cites W2772201261 @default.
- W2981281803 cites W2792853149 @default.
- W2981281803 cites W2799648805 @default.
- W2981281803 cites W2964843923 @default.
- W2981281803 cites W2967730690 @default.
- W2981281803 cites W4211152344 @default.
- W2981281803 doi "https://doi.org/10.1016/j.yjbinx.2019.100060" @default.
- W2981281803 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34384577" @default.
- W2981281803 hasPublicationYear "2019" @default.
- W2981281803 type Work @default.
- W2981281803 sameAs 2981281803 @default.
- W2981281803 citedByCount "14" @default.
- W2981281803 countsByYear W29812818032020 @default.
- W2981281803 countsByYear W29812818032021 @default.
- W2981281803 countsByYear W29812818032022 @default.
- W2981281803 countsByYear W29812818032023 @default.
- W2981281803 crossrefType "journal-article" @default.
- W2981281803 hasAuthorship W2981281803A5008798809 @default.
- W2981281803 hasAuthorship W2981281803A5009469614 @default.
- W2981281803 hasAuthorship W2981281803A5032109404 @default.
- W2981281803 hasAuthorship W2981281803A5049412298 @default.
- W2981281803 hasAuthorship W2981281803A5089243910 @default.
- W2981281803 hasBestOaLocation W29812818031 @default.
- W2981281803 hasConcept C107130276 @default.
- W2981281803 hasConcept C119857082 @default.
- W2981281803 hasConcept C136764020 @default.
- W2981281803 hasConcept C142724271 @default.
- W2981281803 hasConcept C144024400 @default.
- W2981281803 hasConcept C149923435 @default.
- W2981281803 hasConcept C159047783 @default.
- W2981281803 hasConcept C205649164 @default.
- W2981281803 hasConcept C2776480101 @default.
- W2981281803 hasConcept C2777553296 @default.
- W2981281803 hasConcept C2779134260 @default.
- W2981281803 hasConcept C2780148112 @default.
- W2981281803 hasConcept C2908647359 @default.
- W2981281803 hasConcept C41008148 @default.
- W2981281803 hasConcept C518677369 @default.
- W2981281803 hasConcept C71924100 @default.
- W2981281803 hasConcept C99454951 @default.
- W2981281803 hasConceptScore W2981281803C107130276 @default.
- W2981281803 hasConceptScore W2981281803C119857082 @default.
- W2981281803 hasConceptScore W2981281803C136764020 @default.
- W2981281803 hasConceptScore W2981281803C142724271 @default.
- W2981281803 hasConceptScore W2981281803C144024400 @default.
- W2981281803 hasConceptScore W2981281803C149923435 @default.
- W2981281803 hasConceptScore W2981281803C159047783 @default.
- W2981281803 hasConceptScore W2981281803C205649164 @default.
- W2981281803 hasConceptScore W2981281803C2776480101 @default.
- W2981281803 hasConceptScore W2981281803C2777553296 @default.
- W2981281803 hasConceptScore W2981281803C2779134260 @default.
- W2981281803 hasConceptScore W2981281803C2780148112 @default.
- W2981281803 hasConceptScore W2981281803C2908647359 @default.
- W2981281803 hasConceptScore W2981281803C41008148 @default.
- W2981281803 hasConceptScore W2981281803C518677369 @default.
- W2981281803 hasConceptScore W2981281803C71924100 @default.
- W2981281803 hasConceptScore W2981281803C99454951 @default.
- W2981281803 hasFunder F4320315463 @default.
- W2981281803 hasFunder F4320319990 @default.
- W2981281803 hasFunder F4320320323 @default.
- W2981281803 hasFunder F4320321067 @default.
- W2981281803 hasLocation W29812818031 @default.
- W2981281803 hasOpenAccess W2981281803 @default.
- W2981281803 hasPrimaryLocation W29812818031 @default.
- W2981281803 hasRelatedWork W1886222529 @default.
- W2981281803 hasRelatedWork W1988444964 @default.
- W2981281803 hasRelatedWork W2016070907 @default.
- W2981281803 hasRelatedWork W2029739863 @default.
- W2981281803 hasRelatedWork W2125998344 @default.