Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981289075> ?p ?o ?g. }
- W2981289075 endingPage "1393" @default.
- W2981289075 startingPage "1377" @default.
- W2981289075 abstract "Abstract. Greater than 80% of the irrigated area in the Southern High Plains is served by center-pivot irrigation, but the area served by subsurface drip irrigation (SDI) is increasing due to several factors including declining well yields and improved yields and crop water productivity (CWP), particularly for cotton. Not as well established is the degree to which the reduced soil water evaporation (E) in SDI systems affects the soil water balance, water available to the crop, and overall water savings. Grain corn ( L.) and sorghum ( L. Moench) were grown on four large weighing lysimeters at Bushland, Texas, in 2013 (corn), 2014 and 2015 (sorghum), and 2016 (corn). Evapotranspiration (ET) was measured using the lysimeters and using a neutron probe in the surrounding fields. Two of the lysimeters and surrounding fields were irrigated with SDI, and the other two were irrigated with mid-elevation spray application (MESA). The lysimeter-measured evaporative losses were 149 to 151 mm greater from sprinkler-irrigated corn fields than from SDI fields. When growing sorghum, the lysimeter-measured evaporative losses were 44 to 71 mm greater from sprinkler-irrigated fields than from SDI fields. The differences were affected by plant height and became smaller when plant height reached the height of the spray nozzles, indicating that the use of LEPA or LESA nozzles could decrease the evaporative losses from sprinkler-irrigated fields in this region with its high evaporative demand. Annual weather patterns also influenced the differences in evaporative loss, with increased differences in dry years. SDI reduced overall corn water use by 13% to 15%, as determined by neutron probe, while either not significantly affecting yield (2016) or increasing yield by up to 19% (2013) and increasing CWP by 37% (2013) to 13% (2016) as compared with MESA full irrigation. However, sorghum yield decreased by 15% and CWP decreased by 14% in 2014 when using SDI compared with MESA full irrigation due to an overly wet soil profile in the SDI fields and deep percolation that likely caused nutrient losses. In 2015, there were no significant sorghum yield differences between irrigation methods. Sorghum CWP was significantly greater (by 14%) in one SDI field in 2015 compared with MESA fully irrigated sorghum. Overall, sorghum CWP increased by 8% for SDI compared with MESA full irrigation in 2015. These results indicate that SDI will be successful for corn production in the Texas High Plains, but SDI is unlikely to benefit sorghum production. Keywords: Corn, Crop water productivity, Evaporative loss, Evapotranspiration, Irrigation application method, Sorghum, Water use efficiency, Weighing lysimeter." @default.
- W2981289075 created "2019-10-25" @default.
- W2981289075 creator A5013819003 @default.
- W2981289075 creator A5020734319 @default.
- W2981289075 creator A5026732962 @default.
- W2981289075 creator A5045236140 @default.
- W2981289075 creator A5091097342 @default.
- W2981289075 date "2019-01-01" @default.
- W2981289075 modified "2023-10-16" @default.
- W2981289075 title "Corn and Sorghum ET, E, Yield, and CWP as Affected by Irrigation Application Method: SDI versus Mid-Elevation Spray Irrigation" @default.
- W2981289075 cites W1568793371 @default.
- W2981289075 cites W1974412882 @default.
- W2981289075 cites W1975815458 @default.
- W2981289075 cites W1975970188 @default.
- W2981289075 cites W1977057669 @default.
- W2981289075 cites W1977166461 @default.
- W2981289075 cites W1979522743 @default.
- W2981289075 cites W1995995512 @default.
- W2981289075 cites W2004496484 @default.
- W2981289075 cites W2016749291 @default.
- W2981289075 cites W2016916834 @default.
- W2981289075 cites W2017857416 @default.
- W2981289075 cites W2020116326 @default.
- W2981289075 cites W2022142700 @default.
- W2981289075 cites W2025945453 @default.
- W2981289075 cites W2030109185 @default.
- W2981289075 cites W2032974205 @default.
- W2981289075 cites W2039411576 @default.
- W2981289075 cites W2041369789 @default.
- W2981289075 cites W2042036590 @default.
- W2981289075 cites W2057115513 @default.
- W2981289075 cites W2059369557 @default.
- W2981289075 cites W2061143488 @default.
- W2981289075 cites W2062196501 @default.
- W2981289075 cites W2064668334 @default.
- W2981289075 cites W2073991429 @default.
- W2981289075 cites W2074388058 @default.
- W2981289075 cites W2078326052 @default.
- W2981289075 cites W2084532196 @default.
- W2981289075 cites W2090044313 @default.
- W2981289075 cites W2091562384 @default.
- W2981289075 cites W2121204683 @default.
- W2981289075 cites W2154666058 @default.
- W2981289075 cites W2154739540 @default.
- W2981289075 cites W2246157410 @default.
- W2981289075 cites W2254674197 @default.
- W2981289075 cites W2317880481 @default.
- W2981289075 cites W2339576995 @default.
- W2981289075 cites W2549228450 @default.
- W2981289075 cites W2558036674 @default.
- W2981289075 cites W2577025741 @default.
- W2981289075 cites W2613103076 @default.
- W2981289075 cites W2789798926 @default.
- W2981289075 cites W2903238415 @default.
- W2981289075 cites W2906311006 @default.
- W2981289075 cites W1440438 @default.
- W2981289075 doi "https://doi.org/10.13031/trans.13314" @default.
- W2981289075 hasPublicationYear "2019" @default.
- W2981289075 type Work @default.
- W2981289075 sameAs 2981289075 @default.
- W2981289075 citedByCount "17" @default.
- W2981289075 countsByYear W29812890752019 @default.
- W2981289075 countsByYear W29812890752020 @default.
- W2981289075 countsByYear W29812890752021 @default.
- W2981289075 countsByYear W29812890752022 @default.
- W2981289075 countsByYear W29812890752023 @default.
- W2981289075 crossrefType "journal-article" @default.
- W2981289075 hasAuthorship W2981289075A5013819003 @default.
- W2981289075 hasAuthorship W2981289075A5020734319 @default.
- W2981289075 hasAuthorship W2981289075A5026732962 @default.
- W2981289075 hasAuthorship W2981289075A5045236140 @default.
- W2981289075 hasAuthorship W2981289075A5091097342 @default.
- W2981289075 hasBestOaLocation W29812890751 @default.
- W2981289075 hasConcept C127313418 @default.
- W2981289075 hasConcept C149207113 @default.
- W2981289075 hasConcept C159390177 @default.
- W2981289075 hasConcept C159750122 @default.
- W2981289075 hasConcept C176783924 @default.
- W2981289075 hasConcept C187320778 @default.
- W2981289075 hasConcept C18903297 @default.
- W2981289075 hasConcept C2778157034 @default.
- W2981289075 hasConcept C39432304 @default.
- W2981289075 hasConcept C6557445 @default.
- W2981289075 hasConcept C66465714 @default.
- W2981289075 hasConcept C72551326 @default.
- W2981289075 hasConcept C76886044 @default.
- W2981289075 hasConcept C85871539 @default.
- W2981289075 hasConcept C86803240 @default.
- W2981289075 hasConcept C88862950 @default.
- W2981289075 hasConceptScore W2981289075C127313418 @default.
- W2981289075 hasConceptScore W2981289075C149207113 @default.
- W2981289075 hasConceptScore W2981289075C159390177 @default.
- W2981289075 hasConceptScore W2981289075C159750122 @default.
- W2981289075 hasConceptScore W2981289075C176783924 @default.
- W2981289075 hasConceptScore W2981289075C187320778 @default.
- W2981289075 hasConceptScore W2981289075C18903297 @default.
- W2981289075 hasConceptScore W2981289075C2778157034 @default.
- W2981289075 hasConceptScore W2981289075C39432304 @default.