Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981308202> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2981308202 endingPage "012052" @default.
- W2981308202 startingPage "012052" @default.
- W2981308202 abstract "Abstract Terrain recognition is one of the key problems of mobile robots. It can help the robots understand the surrounding environment. With terrain prediction, the robots could realize autonomous navigation and path planning. This paper focuses on image feature selection for terrain recognition with visions. For terrain recognition tasks, feature is used to represent image information. Traditional visual features can be targeted to express the low-level information like color or texture. The deep feature is extracted by self-learning of neural network, containing richer semantic information than low-level features. There is a complementary relationship between the two. The efficiency and accuracy of terrain recognition is remarkably raised by the fusion of two above features. In the course of algorithm, combination of the off-line training model and on-line recognition model is used to identify the terrain type of the sample, which is to ensure the real-time performance. The corresponding terrain dataset--SDUterrain is established. The algorithm achieves 96% or higher classification accuracy in the experiments based on the SDUterrain Dataset, which is much higher than the single feature classification algorithm." @default.
- W2981308202 created "2019-10-25" @default.
- W2981308202 creator A5008606533 @default.
- W2981308202 creator A5009279384 @default.
- W2981308202 creator A5084748369 @default.
- W2981308202 date "2019-10-01" @default.
- W2981308202 modified "2023-09-27" @default.
- W2981308202 title "Fusion of Deep Feature and Hand-Crafted Features for Terrain Recognition" @default.
- W2981308202 cites W1566135517 @default.
- W2981308202 cites W2023504165 @default.
- W2981308202 cites W2089652819 @default.
- W2981308202 cites W2136922672 @default.
- W2981308202 cites W2151103935 @default.
- W2981308202 cites W2163352848 @default.
- W2981308202 cites W2755513316 @default.
- W2981308202 cites W4239510810 @default.
- W2981308202 doi "https://doi.org/10.1088/1757-899x/646/1/012052" @default.
- W2981308202 hasPublicationYear "2019" @default.
- W2981308202 type Work @default.
- W2981308202 sameAs 2981308202 @default.
- W2981308202 citedByCount "3" @default.
- W2981308202 countsByYear W29813082022021 @default.
- W2981308202 countsByYear W29813082022022 @default.
- W2981308202 crossrefType "journal-article" @default.
- W2981308202 hasAuthorship W2981308202A5008606533 @default.
- W2981308202 hasAuthorship W2981308202A5009279384 @default.
- W2981308202 hasAuthorship W2981308202A5084748369 @default.
- W2981308202 hasBestOaLocation W29813082021 @default.
- W2981308202 hasConcept C138885662 @default.
- W2981308202 hasConcept C148483581 @default.
- W2981308202 hasConcept C153180895 @default.
- W2981308202 hasConcept C154945302 @default.
- W2981308202 hasConcept C161840515 @default.
- W2981308202 hasConcept C198352243 @default.
- W2981308202 hasConcept C205649164 @default.
- W2981308202 hasConcept C2524010 @default.
- W2981308202 hasConcept C2776401178 @default.
- W2981308202 hasConcept C31972630 @default.
- W2981308202 hasConcept C33923547 @default.
- W2981308202 hasConcept C41008148 @default.
- W2981308202 hasConcept C41895202 @default.
- W2981308202 hasConcept C52622490 @default.
- W2981308202 hasConcept C58640448 @default.
- W2981308202 hasConcept C90509273 @default.
- W2981308202 hasConceptScore W2981308202C138885662 @default.
- W2981308202 hasConceptScore W2981308202C148483581 @default.
- W2981308202 hasConceptScore W2981308202C153180895 @default.
- W2981308202 hasConceptScore W2981308202C154945302 @default.
- W2981308202 hasConceptScore W2981308202C161840515 @default.
- W2981308202 hasConceptScore W2981308202C198352243 @default.
- W2981308202 hasConceptScore W2981308202C205649164 @default.
- W2981308202 hasConceptScore W2981308202C2524010 @default.
- W2981308202 hasConceptScore W2981308202C2776401178 @default.
- W2981308202 hasConceptScore W2981308202C31972630 @default.
- W2981308202 hasConceptScore W2981308202C33923547 @default.
- W2981308202 hasConceptScore W2981308202C41008148 @default.
- W2981308202 hasConceptScore W2981308202C41895202 @default.
- W2981308202 hasConceptScore W2981308202C52622490 @default.
- W2981308202 hasConceptScore W2981308202C58640448 @default.
- W2981308202 hasConceptScore W2981308202C90509273 @default.
- W2981308202 hasIssue "1" @default.
- W2981308202 hasLocation W29813082021 @default.
- W2981308202 hasOpenAccess W2981308202 @default.
- W2981308202 hasPrimaryLocation W29813082021 @default.
- W2981308202 hasRelatedWork W2016461833 @default.
- W2981308202 hasRelatedWork W2022684485 @default.
- W2981308202 hasRelatedWork W2314710578 @default.
- W2981308202 hasRelatedWork W2382607599 @default.
- W2981308202 hasRelatedWork W2515280043 @default.
- W2981308202 hasRelatedWork W2534909612 @default.
- W2981308202 hasRelatedWork W2592385986 @default.
- W2981308202 hasRelatedWork W3185455591 @default.
- W2981308202 hasRelatedWork W4307883119 @default.
- W2981308202 hasRelatedWork W2345184372 @default.
- W2981308202 hasVolume "646" @default.
- W2981308202 isParatext "false" @default.
- W2981308202 isRetracted "false" @default.
- W2981308202 magId "2981308202" @default.
- W2981308202 workType "article" @default.