Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981342642> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2981342642 abstract "At present, the ways for detecting SQL injection attacks include pre-compilation of SQL statements, filtering user input at the WEB layer to prevent SQL injection, such as filtering global parameters with Filter, strictly restricting the operation authority of the database, and trying to satisfy all. The lowest permissions for the operation, etc. The detection method for the SQL injection attack is mainly to analyze the incoming parameters to determine whether an illegal parameter is passed in. However, due to the poor real-time performance of the analyzed traffic content and the accuracy, the false positive rate is not ideal. Therefore, this paper proposes a deep learning-based approach to find SQL injection aggression. It does not need to analyze and extract all the content. It only needs to find out the features needed by the model. Entering these features into the model that is trained in advance can detect SQL injection attacks traffic in real time. This paper use deep learning to identify SQL injection attacks in network traffic. We select the target features according to the attack characteristics of the SQL injection attack and get request from url or post packet as train data; use the deep belief network (DBN) model to train the selected features and the collected sample data, and finally get an identifiable SQL Injection attack model. Finally find a best model for Detecting SQL injection, and achieve online and real-time detection." @default.
- W2981342642 created "2019-11-01" @default.
- W2981342642 creator A5002086524 @default.
- W2981342642 creator A5020695223 @default.
- W2981342642 creator A5071576848 @default.
- W2981342642 creator A5074263632 @default.
- W2981342642 creator A5078594000 @default.
- W2981342642 creator A5091141461 @default.
- W2981342642 date "2019-10-22" @default.
- W2981342642 modified "2023-09-27" @default.
- W2981342642 title "SQL Injection Detection Based on Deep Belief Network" @default.
- W2981342642 cites W2003010924 @default.
- W2981342642 cites W2014712522 @default.
- W2981342642 cites W2103518983 @default.
- W2981342642 cites W2128962261 @default.
- W2981342642 cites W2148488647 @default.
- W2981342642 cites W2170157775 @default.
- W2981342642 cites W2962836134 @default.
- W2981342642 doi "https://doi.org/10.1145/3331453.3361280" @default.
- W2981342642 hasPublicationYear "2019" @default.
- W2981342642 type Work @default.
- W2981342642 sameAs 2981342642 @default.
- W2981342642 citedByCount "9" @default.
- W2981342642 countsByYear W29813426422020 @default.
- W2981342642 countsByYear W29813426422021 @default.
- W2981342642 countsByYear W29813426422022 @default.
- W2981342642 countsByYear W29813426422023 @default.
- W2981342642 crossrefType "proceedings-article" @default.
- W2981342642 hasAuthorship W2981342642A5002086524 @default.
- W2981342642 hasAuthorship W2981342642A5020695223 @default.
- W2981342642 hasAuthorship W2981342642A5071576848 @default.
- W2981342642 hasAuthorship W2981342642A5074263632 @default.
- W2981342642 hasAuthorship W2981342642A5078594000 @default.
- W2981342642 hasAuthorship W2981342642A5091141461 @default.
- W2981342642 hasConcept C150451098 @default.
- W2981342642 hasConcept C154945302 @default.
- W2981342642 hasConcept C164120249 @default.
- W2981342642 hasConcept C194222762 @default.
- W2981342642 hasConcept C199360897 @default.
- W2981342642 hasConcept C23123220 @default.
- W2981342642 hasConcept C41008148 @default.
- W2981342642 hasConcept C510870499 @default.
- W2981342642 hasConcept C77088390 @default.
- W2981342642 hasConcept C97854310 @default.
- W2981342642 hasConceptScore W2981342642C150451098 @default.
- W2981342642 hasConceptScore W2981342642C154945302 @default.
- W2981342642 hasConceptScore W2981342642C164120249 @default.
- W2981342642 hasConceptScore W2981342642C194222762 @default.
- W2981342642 hasConceptScore W2981342642C199360897 @default.
- W2981342642 hasConceptScore W2981342642C23123220 @default.
- W2981342642 hasConceptScore W2981342642C41008148 @default.
- W2981342642 hasConceptScore W2981342642C510870499 @default.
- W2981342642 hasConceptScore W2981342642C77088390 @default.
- W2981342642 hasConceptScore W2981342642C97854310 @default.
- W2981342642 hasLocation W29813426421 @default.
- W2981342642 hasOpenAccess W2981342642 @default.
- W2981342642 hasPrimaryLocation W29813426421 @default.
- W2981342642 hasRelatedWork W142115101 @default.
- W2981342642 hasRelatedWork W1996040862 @default.
- W2981342642 hasRelatedWork W2291333157 @default.
- W2981342642 hasRelatedWork W2360416485 @default.
- W2981342642 hasRelatedWork W2362122277 @default.
- W2981342642 hasRelatedWork W2382501300 @default.
- W2981342642 hasRelatedWork W2406562224 @default.
- W2981342642 hasRelatedWork W2611357987 @default.
- W2981342642 hasRelatedWork W2751450447 @default.
- W2981342642 hasRelatedWork W2752911054 @default.
- W2981342642 isParatext "false" @default.
- W2981342642 isRetracted "false" @default.
- W2981342642 magId "2981342642" @default.
- W2981342642 workType "article" @default.