Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981384971> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2981384971 endingPage "35" @default.
- W2981384971 startingPage "28" @default.
- W2981384971 abstract "Detecting damages is the most important criterion in any engineering creation—be it a machine or a building. Among the engineering creation, civil engineering structures need a continuous monitoring to check their operations, performance and the health status of the structures. Damage detection cannot be done manually every time. Automated systems have to be developed in order to monitor the health of the structure periodically. Hence, structural health monitoring (SHM) aims to develop automated systems for the continuous monitoring, inspection, and damage detection of structures with minimum labour involvement. In order to achieve this, sensors are deployed to enable predictive monitoring of the general health of a structure, be it a building, a bridge, or other structure whose integrity translates into the safety of those who utilizes and depends upon it. One of the fundamental requirements of SHM is sensor location optimization. To make efficient placement in SHM, a hybrid optimization strategy named strain energy method-genetic algorithm (SEM-GA) is proposed. This approach firstly selects mode shape of the structures. Then, the modal strain energy method is adopted to conduct the initial sensor placement. Finally, the genetic algorithm (GA) is utilized to determine the optimal number and locations of the sensors, which uses the root mean square of off-diagonal elements in the modal assurance criterion matrix as the fitness function. Further, for damage detection, damages are induced in a certain storey and the modal strain energy change is studied. Keywords: Structural health monitoring, optimal sensor placement, damage detection Cite this Article Sai Harshita MM , Sakthieswaran N. Deploying Optimal Number of Sensors and Damage Detection in Structural Health Monitoring Using SEM-GA Method . Current Trends in Signal Processing . 2016; 6(2): 28–35p." @default.
- W2981384971 created "2019-11-01" @default.
- W2981384971 creator A5009358917 @default.
- W2981384971 creator A5037133660 @default.
- W2981384971 date "2016-08-07" @default.
- W2981384971 modified "2023-09-28" @default.
- W2981384971 title "Deploying Optimal Number of Sensors and Damage Detection in Structural Health Monitoring Using SEM-GA Method" @default.
- W2981384971 doi "https://doi.org/10.37591/ctsp.v6i2.4931" @default.
- W2981384971 hasPublicationYear "2016" @default.
- W2981384971 type Work @default.
- W2981384971 sameAs 2981384971 @default.
- W2981384971 citedByCount "0" @default.
- W2981384971 crossrefType "journal-article" @default.
- W2981384971 hasAuthorship W2981384971A5009358917 @default.
- W2981384971 hasAuthorship W2981384971A5037133660 @default.
- W2981384971 hasConcept C100776233 @default.
- W2981384971 hasConcept C105795698 @default.
- W2981384971 hasConcept C119857082 @default.
- W2981384971 hasConcept C124101348 @default.
- W2981384971 hasConcept C126322002 @default.
- W2981384971 hasConcept C127413603 @default.
- W2981384971 hasConcept C130367717 @default.
- W2981384971 hasConcept C185592680 @default.
- W2981384971 hasConcept C186370098 @default.
- W2981384971 hasConcept C188027245 @default.
- W2981384971 hasConcept C200601418 @default.
- W2981384971 hasConcept C24590314 @default.
- W2981384971 hasConcept C2524010 @default.
- W2981384971 hasConcept C2776247918 @default.
- W2981384971 hasConcept C31258907 @default.
- W2981384971 hasConcept C33923547 @default.
- W2981384971 hasConcept C41008148 @default.
- W2981384971 hasConcept C66938386 @default.
- W2981384971 hasConcept C71139939 @default.
- W2981384971 hasConcept C71924100 @default.
- W2981384971 hasConcept C8880873 @default.
- W2981384971 hasConceptScore W2981384971C100776233 @default.
- W2981384971 hasConceptScore W2981384971C105795698 @default.
- W2981384971 hasConceptScore W2981384971C119857082 @default.
- W2981384971 hasConceptScore W2981384971C124101348 @default.
- W2981384971 hasConceptScore W2981384971C126322002 @default.
- W2981384971 hasConceptScore W2981384971C127413603 @default.
- W2981384971 hasConceptScore W2981384971C130367717 @default.
- W2981384971 hasConceptScore W2981384971C185592680 @default.
- W2981384971 hasConceptScore W2981384971C186370098 @default.
- W2981384971 hasConceptScore W2981384971C188027245 @default.
- W2981384971 hasConceptScore W2981384971C200601418 @default.
- W2981384971 hasConceptScore W2981384971C24590314 @default.
- W2981384971 hasConceptScore W2981384971C2524010 @default.
- W2981384971 hasConceptScore W2981384971C2776247918 @default.
- W2981384971 hasConceptScore W2981384971C31258907 @default.
- W2981384971 hasConceptScore W2981384971C33923547 @default.
- W2981384971 hasConceptScore W2981384971C41008148 @default.
- W2981384971 hasConceptScore W2981384971C66938386 @default.
- W2981384971 hasConceptScore W2981384971C71139939 @default.
- W2981384971 hasConceptScore W2981384971C71924100 @default.
- W2981384971 hasConceptScore W2981384971C8880873 @default.
- W2981384971 hasIssue "2" @default.
- W2981384971 hasLocation W29813849711 @default.
- W2981384971 hasOpenAccess W2981384971 @default.
- W2981384971 hasPrimaryLocation W29813849711 @default.
- W2981384971 hasRelatedWork W2086708801 @default.
- W2981384971 hasRelatedWork W2213141682 @default.
- W2981384971 hasRelatedWork W2312302509 @default.
- W2981384971 hasRelatedWork W2325800595 @default.
- W2981384971 hasRelatedWork W2394683708 @default.
- W2981384971 hasRelatedWork W2403356523 @default.
- W2981384971 hasRelatedWork W2576439958 @default.
- W2981384971 hasRelatedWork W2753994518 @default.
- W2981384971 hasRelatedWork W2787341579 @default.
- W2981384971 hasRelatedWork W2903975723 @default.
- W2981384971 hasRelatedWork W2904391289 @default.
- W2981384971 hasRelatedWork W2904784663 @default.
- W2981384971 hasRelatedWork W2985828399 @default.
- W2981384971 hasRelatedWork W3045006017 @default.
- W2981384971 hasRelatedWork W3120960942 @default.
- W2981384971 hasRelatedWork W3127642695 @default.
- W2981384971 hasRelatedWork W3152951647 @default.
- W2981384971 hasRelatedWork W3199712640 @default.
- W2981384971 hasRelatedWork W1497684181 @default.
- W2981384971 hasRelatedWork W2960308845 @default.
- W2981384971 hasVolume "6" @default.
- W2981384971 isParatext "false" @default.
- W2981384971 isRetracted "false" @default.
- W2981384971 magId "2981384971" @default.
- W2981384971 workType "article" @default.