Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981441128> ?p ?o ?g. }
- W2981441128 endingPage "3289" @default.
- W2981441128 startingPage "3273" @default.
- W2981441128 abstract "Abstract. Fine particulate matter with aerodynamic diameters ≤2.5 µm (PM2.5) has adverse effects on human health and the atmospheric environment. The estimation of surface PM2.5 concentrations has made intensive use of satellite-derived aerosol products. However, it has been a great challenge to obtain high-quality and high-resolution PM2.5 data from both ground and satellite observations, which is essential to monitor air pollution over small-scale areas such as metropolitan regions. Here, the space–time extremely randomized trees (STET) model was enhanced by integrating updated spatiotemporal information and additional auxiliary data to improve the spatial resolution and overall accuracy of PM2.5 estimates across China. To this end, the newly released Moderate Resolution Imaging Spectroradiometer Multi-Angle Implementation of Atmospheric Correction AOD product, along with meteorological, topographical and land-use data and pollution emissions, was input to the STET model, and daily 1 km PM2.5 maps for 2018 covering mainland China were produced. The STET model performed well, with a high out-of-sample (out-of-station) cross-validation coefficient of determination (R2) of 0.89 (0.88), a low root-mean-square error of 10.33 (10.93) µg m−3, a small mean absolute error of 6.69 (7.15) µg m−3 and a small mean relative error of 21.28 % (23.69 %). In particular, the model captured well the PM2.5 concentrations at both regional and individual site scales. The North China Plain, the Sichuan Basin and Xinjiang Province always featured high PM2.5 pollution levels, especially in winter. The STET model outperformed most models presented in previous related studies, with a strong predictive power (e.g., monthly R2=0.80), which can be used to estimate historical PM2.5 records. More importantly, this study provides a new approach for obtaining high-resolution and high-quality PM2.5 dataset across mainland China (i.e., ChinaHighPM2.5), important for air pollution studies focused on urban areas." @default.
- W2981441128 created "2019-11-01" @default.
- W2981441128 creator A5000385187 @default.
- W2981441128 creator A5003753653 @default.
- W2981441128 creator A5012234223 @default.
- W2981441128 creator A5018668652 @default.
- W2981441128 creator A5020147975 @default.
- W2981441128 creator A5021321050 @default.
- W2981441128 creator A5021452248 @default.
- W2981441128 creator A5025385231 @default.
- W2981441128 creator A5028648587 @default.
- W2981441128 creator A5037950211 @default.
- W2981441128 creator A5052836448 @default.
- W2981441128 creator A5068048071 @default.
- W2981441128 creator A5074320223 @default.
- W2981441128 date "2020-03-19" @default.
- W2981441128 modified "2023-10-17" @default.
- W2981441128 title "Improved 1 km resolution PM<sub>2.5</sub> estimates across China using enhanced space–time extremely randomized trees" @default.
- W2981441128 cites W1819362720 @default.
- W2981441128 cites W1980891198 @default.
- W2981441128 cites W1982822400 @default.
- W2981441128 cites W2021394581 @default.
- W2981441128 cites W2027715960 @default.
- W2981441128 cites W2044952036 @default.
- W2981441128 cites W2056132907 @default.
- W2981441128 cites W2059737913 @default.
- W2981441128 cites W2067129339 @default.
- W2981441128 cites W2089164331 @default.
- W2981441128 cites W2094440342 @default.
- W2981441128 cites W2101350555 @default.
- W2981441128 cites W2103977502 @default.
- W2981441128 cites W2107586501 @default.
- W2981441128 cites W2108079253 @default.
- W2981441128 cites W2119449864 @default.
- W2981441128 cites W2124005542 @default.
- W2981441128 cites W2127603271 @default.
- W2981441128 cites W2130042267 @default.
- W2981441128 cites W2145971409 @default.
- W2981441128 cites W2158143121 @default.
- W2981441128 cites W2284873887 @default.
- W2981441128 cites W2294038847 @default.
- W2981441128 cites W2312602772 @default.
- W2981441128 cites W2405493398 @default.
- W2981441128 cites W2514545569 @default.
- W2981441128 cites W2516758599 @default.
- W2981441128 cites W2531171441 @default.
- W2981441128 cites W2737242952 @default.
- W2981441128 cites W2742946820 @default.
- W2981441128 cites W2758564043 @default.
- W2981441128 cites W2776069591 @default.
- W2981441128 cites W2790202404 @default.
- W2981441128 cites W2793607274 @default.
- W2981441128 cites W2800133189 @default.
- W2981441128 cites W2804076223 @default.
- W2981441128 cites W2891119716 @default.
- W2981441128 cites W2896823820 @default.
- W2981441128 cites W2900379721 @default.
- W2981441128 cites W2900802555 @default.
- W2981441128 cites W2908904102 @default.
- W2981441128 cites W2910950772 @default.
- W2981441128 cites W2912750253 @default.
- W2981441128 cites W2915275133 @default.
- W2981441128 cites W2930499469 @default.
- W2981441128 cites W2938438492 @default.
- W2981441128 cites W2947810568 @default.
- W2981441128 cites W2948834265 @default.
- W2981441128 cites W2953978338 @default.
- W2981441128 cites W2954412651 @default.
- W2981441128 cites W2954744300 @default.
- W2981441128 cites W2966752805 @default.
- W2981441128 cites W2970481843 @default.
- W2981441128 cites W2981043630 @default.
- W2981441128 cites W2991398488 @default.
- W2981441128 cites W796617318 @default.
- W2981441128 doi "https://doi.org/10.5194/acp-20-3273-2020" @default.
- W2981441128 hasPublicationYear "2020" @default.
- W2981441128 type Work @default.
- W2981441128 sameAs 2981441128 @default.
- W2981441128 citedByCount "260" @default.
- W2981441128 countsByYear W29814411282020 @default.
- W2981441128 countsByYear W29814411282021 @default.
- W2981441128 countsByYear W29814411282022 @default.
- W2981441128 countsByYear W29814411282023 @default.
- W2981441128 crossrefType "journal-article" @default.
- W2981441128 hasAuthorship W2981441128A5000385187 @default.
- W2981441128 hasAuthorship W2981441128A5003753653 @default.
- W2981441128 hasAuthorship W2981441128A5012234223 @default.
- W2981441128 hasAuthorship W2981441128A5018668652 @default.
- W2981441128 hasAuthorship W2981441128A5020147975 @default.
- W2981441128 hasAuthorship W2981441128A5021321050 @default.
- W2981441128 hasAuthorship W2981441128A5021452248 @default.
- W2981441128 hasAuthorship W2981441128A5025385231 @default.
- W2981441128 hasAuthorship W2981441128A5028648587 @default.
- W2981441128 hasAuthorship W2981441128A5037950211 @default.
- W2981441128 hasAuthorship W2981441128A5052836448 @default.
- W2981441128 hasAuthorship W2981441128A5068048071 @default.
- W2981441128 hasAuthorship W2981441128A5074320223 @default.
- W2981441128 hasBestOaLocation W29814411281 @default.