Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981441564> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2981441564 endingPage "100054" @default.
- W2981441564 startingPage "100054" @default.
- W2981441564 abstract "Abstract Twitter is a valuable source for learning about public opinion and political communication. Applying data mining to Twitter content (i.e., “Twitter mining”) offers a way to analyze large numbers of tweets to help us understand political associations the public makes. However, the use of incivility and sarcasm in political discourse may pose a challenge for Twitter mining in the context of politics. In this study, we apply Twitter mining to the 2018 confirmation of Judge Brett Kavanaugh to the Supreme Court to look for possible changes in public opinion of the Court in the wake of the confirmation hearing and to determine whether sarcasm in political messages on Twitter can alter the results of computational methods when using large datasets. Examining two waves of tweets, one in the days immediately following the confirmation and one a month later, we find evidence of a shift in public opinion as associations between the Supreme Court and partisanship emerge only in the latter period. Using sentiment analysis, we also demonstrate that sarcasm led to over-categorization of positive tweets, which altered the results by suggesting that the public viewed partisanship on the Supreme Court favorably." @default.
- W2981441564 created "2019-11-01" @default.
- W2981441564 creator A5023496425 @default.
- W2981441564 creator A5026089310 @default.
- W2981441564 creator A5080134903 @default.
- W2981441564 creator A5089495936 @default.
- W2981441564 date "2019-11-01" @default.
- W2981441564 modified "2023-10-03" @default.
- W2981441564 title "From associations to sarcasm: Mining the shift of opinions regarding the Supreme Court on twitter" @default.
- W2981441564 cites W1526674249 @default.
- W2981441564 cites W1958847939 @default.
- W2981441564 cites W1964583229 @default.
- W2981441564 cites W1981718292 @default.
- W2981441564 cites W1997838466 @default.
- W2981441564 cites W2016175430 @default.
- W2981441564 cites W2022634357 @default.
- W2981441564 cites W2060836284 @default.
- W2981441564 cites W2085045356 @default.
- W2981441564 cites W2151907069 @default.
- W2981441564 cites W2163526869 @default.
- W2981441564 cites W2252381721 @default.
- W2981441564 cites W2257959469 @default.
- W2981441564 cites W2295876872 @default.
- W2981441564 cites W2472594302 @default.
- W2981441564 cites W2484977837 @default.
- W2981441564 cites W2512317583 @default.
- W2981441564 cites W2566625606 @default.
- W2981441564 cites W2587778241 @default.
- W2981441564 cites W2590061102 @default.
- W2981441564 cites W2619490986 @default.
- W2981441564 cites W2623431110 @default.
- W2981441564 cites W2740202172 @default.
- W2981441564 cites W2760986038 @default.
- W2981441564 cites W2763642544 @default.
- W2981441564 cites W2781519844 @default.
- W2981441564 cites W2789906710 @default.
- W2981441564 cites W2794018343 @default.
- W2981441564 cites W2803171005 @default.
- W2981441564 cites W2808079449 @default.
- W2981441564 cites W2867135950 @default.
- W2981441564 cites W2889262254 @default.
- W2981441564 cites W2913675756 @default.
- W2981441564 cites W2927723731 @default.
- W2981441564 cites W2941724078 @default.
- W2981441564 cites W2963611867 @default.
- W2981441564 doi "https://doi.org/10.1016/j.osnem.2019.100054" @default.
- W2981441564 hasPublicationYear "2019" @default.
- W2981441564 type Work @default.
- W2981441564 sameAs 2981441564 @default.
- W2981441564 citedByCount "15" @default.
- W2981441564 countsByYear W29814415642020 @default.
- W2981441564 countsByYear W29814415642021 @default.
- W2981441564 countsByYear W29814415642022 @default.
- W2981441564 countsByYear W29814415642023 @default.
- W2981441564 crossrefType "journal-article" @default.
- W2981441564 hasAuthorship W2981441564A5023496425 @default.
- W2981441564 hasAuthorship W2981441564A5026089310 @default.
- W2981441564 hasAuthorship W2981441564A5080134903 @default.
- W2981441564 hasAuthorship W2981441564A5089495936 @default.
- W2981441564 hasConcept C124952713 @default.
- W2981441564 hasConcept C142362112 @default.
- W2981441564 hasConcept C15744967 @default.
- W2981441564 hasConcept C17744445 @default.
- W2981441564 hasConcept C199539241 @default.
- W2981441564 hasConcept C2776207355 @default.
- W2981441564 hasConcept C2778272461 @default.
- W2981441564 hasConcept C2779975665 @default.
- W2981441564 hasConcept C518677369 @default.
- W2981441564 hasConceptScore W2981441564C124952713 @default.
- W2981441564 hasConceptScore W2981441564C142362112 @default.
- W2981441564 hasConceptScore W2981441564C15744967 @default.
- W2981441564 hasConceptScore W2981441564C17744445 @default.
- W2981441564 hasConceptScore W2981441564C199539241 @default.
- W2981441564 hasConceptScore W2981441564C2776207355 @default.
- W2981441564 hasConceptScore W2981441564C2778272461 @default.
- W2981441564 hasConceptScore W2981441564C2779975665 @default.
- W2981441564 hasConceptScore W2981441564C518677369 @default.
- W2981441564 hasLocation W29814415641 @default.
- W2981441564 hasOpenAccess W2981441564 @default.
- W2981441564 hasPrimaryLocation W29814415641 @default.
- W2981441564 hasRelatedWork W1203575969 @default.
- W2981441564 hasRelatedWork W1560432242 @default.
- W2981441564 hasRelatedWork W2748952813 @default.
- W2981441564 hasRelatedWork W2899084033 @default.
- W2981441564 hasRelatedWork W3123398386 @default.
- W2981441564 hasRelatedWork W3123993492 @default.
- W2981441564 hasRelatedWork W3204280097 @default.
- W2981441564 hasRelatedWork W4200081279 @default.
- W2981441564 hasRelatedWork W4361029305 @default.
- W2981441564 hasRelatedWork W2173853683 @default.
- W2981441564 hasVolume "14" @default.
- W2981441564 isParatext "false" @default.
- W2981441564 isRetracted "false" @default.
- W2981441564 magId "2981441564" @default.
- W2981441564 workType "article" @default.