Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981490178> ?p ?o ?g. }
- W2981490178 abstract "Purpose The aim of this study was to test whether radiomics-based machine learning can enable the differentiation between glioblastoma (GBM) and anaplastic oligodendroglioma (AO). Methods This retrospective study involved 126 patients histologically diagnosed as GBM (n=76) or AO (n=50) in our institution from January 2015 to December 2018. A total number of 40 three-dimensional texture features were extracted from contrast-enhanced T1-weighted images using LIFEx package. Six diagnostic models were established with selection methods and classifiers. The optimal radiomics features were separately selected into three datasets with three feature selection methods (distance correlation, least absolute shrinkage and selection operator (LASSO), and gradient boosting decision tree (GBDT)). Then datasets were separately adopted into linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Specificity, sensitivity, accuracy, and area under curve (AUC) of each model were calculated to evaluate their diagnostic performances. Results Both classifiers showed promising ability in discrimination with AUC more than 0.900 when combined with suitable feature selection method. For LDA-based models, the AUC of models were 0.986, 0.994 and 0.970 in the testing group, respectively. For the SVM-based models, the AUC of models were 0.923, 0.817 and 0.500 in the testing group, respectively. The over-fitting model was GBDT+SVM, suggesting that this model was too volatile that unsuitable for classification. Conclusion This study indicates radiomics-based machine learning has the potential to be utilized in discriminating GBM from AO." @default.
- W2981490178 created "2019-11-01" @default.
- W2981490178 creator A5002590827 @default.
- W2981490178 creator A5011130572 @default.
- W2981490178 creator A5011883978 @default.
- W2981490178 creator A5022157306 @default.
- W2981490178 creator A5032764121 @default.
- W2981490178 creator A5082567988 @default.
- W2981490178 creator A5090168066 @default.
- W2981490178 date "2019-11-05" @default.
- W2981490178 modified "2023-09-29" @default.
- W2981490178 title "Radiomics-Based Machine Learning Technology Enables Better Differentiation Between Glioblastoma and Anaplastic Oligodendroglioma" @default.
- W2981490178 cites W1884191083 @default.
- W2981490178 cites W1887747927 @default.
- W2981490178 cites W1974896124 @default.
- W2981490178 cites W2018190135 @default.
- W2981490178 cites W2022893964 @default.
- W2981490178 cites W2024514018 @default.
- W2981490178 cites W2064214863 @default.
- W2981490178 cites W2093084928 @default.
- W2981490178 cites W2148977460 @default.
- W2981490178 cites W2177870565 @default.
- W2981490178 cites W2180878079 @default.
- W2981490178 cites W2183991412 @default.
- W2981490178 cites W2334193464 @default.
- W2981490178 cites W2409456704 @default.
- W2981490178 cites W2419264638 @default.
- W2981490178 cites W2531560160 @default.
- W2981490178 cites W2590474652 @default.
- W2981490178 cites W2592298263 @default.
- W2981490178 cites W2604990802 @default.
- W2981490178 cites W2611536191 @default.
- W2981490178 cites W2614549267 @default.
- W2981490178 cites W2617561029 @default.
- W2981490178 cites W2659205250 @default.
- W2981490178 cites W2745743236 @default.
- W2981490178 cites W2749025438 @default.
- W2981490178 cites W2767121451 @default.
- W2981490178 cites W2768731904 @default.
- W2981490178 cites W2770869174 @default.
- W2981490178 cites W2775176909 @default.
- W2981490178 cites W2802480600 @default.
- W2981490178 cites W2804187314 @default.
- W2981490178 cites W2808184309 @default.
- W2981490178 cites W2809848353 @default.
- W2981490178 cites W2901294913 @default.
- W2981490178 cites W2902620820 @default.
- W2981490178 cites W2913323708 @default.
- W2981490178 cites W4234865248 @default.
- W2981490178 cites W4237386889 @default.
- W2981490178 cites W4249247926 @default.
- W2981490178 cites W434824125 @default.
- W2981490178 doi "https://doi.org/10.3389/fonc.2019.01164" @default.
- W2981490178 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6848260" @default.
- W2981490178 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31750250" @default.
- W2981490178 hasPublicationYear "2019" @default.
- W2981490178 type Work @default.
- W2981490178 sameAs 2981490178 @default.
- W2981490178 citedByCount "25" @default.
- W2981490178 countsByYear W29814901782020 @default.
- W2981490178 countsByYear W29814901782021 @default.
- W2981490178 countsByYear W29814901782022 @default.
- W2981490178 countsByYear W29814901782023 @default.
- W2981490178 crossrefType "journal-article" @default.
- W2981490178 hasAuthorship W2981490178A5002590827 @default.
- W2981490178 hasAuthorship W2981490178A5011130572 @default.
- W2981490178 hasAuthorship W2981490178A5011883978 @default.
- W2981490178 hasAuthorship W2981490178A5022157306 @default.
- W2981490178 hasAuthorship W2981490178A5032764121 @default.
- W2981490178 hasAuthorship W2981490178A5082567988 @default.
- W2981490178 hasAuthorship W2981490178A5090168066 @default.
- W2981490178 hasBestOaLocation W29814901781 @default.
- W2981490178 hasConcept C119857082 @default.
- W2981490178 hasConcept C12267149 @default.
- W2981490178 hasConcept C136764020 @default.
- W2981490178 hasConcept C148483581 @default.
- W2981490178 hasConcept C153180895 @default.
- W2981490178 hasConcept C154945302 @default.
- W2981490178 hasConcept C169258074 @default.
- W2981490178 hasConcept C2776194525 @default.
- W2981490178 hasConcept C2778559731 @default.
- W2981490178 hasConcept C37616216 @default.
- W2981490178 hasConcept C41008148 @default.
- W2981490178 hasConcept C502942594 @default.
- W2981490178 hasConcept C58471807 @default.
- W2981490178 hasConcept C69738355 @default.
- W2981490178 hasConcept C71924100 @default.
- W2981490178 hasConceptScore W2981490178C119857082 @default.
- W2981490178 hasConceptScore W2981490178C12267149 @default.
- W2981490178 hasConceptScore W2981490178C136764020 @default.
- W2981490178 hasConceptScore W2981490178C148483581 @default.
- W2981490178 hasConceptScore W2981490178C153180895 @default.
- W2981490178 hasConceptScore W2981490178C154945302 @default.
- W2981490178 hasConceptScore W2981490178C169258074 @default.
- W2981490178 hasConceptScore W2981490178C2776194525 @default.
- W2981490178 hasConceptScore W2981490178C2778559731 @default.
- W2981490178 hasConceptScore W2981490178C37616216 @default.
- W2981490178 hasConceptScore W2981490178C41008148 @default.
- W2981490178 hasConceptScore W2981490178C502942594 @default.
- W2981490178 hasConceptScore W2981490178C58471807 @default.