Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981501230> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2981501230 abstract "Depression has been the leading cause of mental-health illness worldwide. Major depressive disorder (MDD), is a common mental health disorder that affects both psychologically as well as physically which could lead to loss of lives. Due to the lack of diagnostic tests and subjectivity involved in detecting depression, there is a growing interest in using behavioural cues to automate depression diagnosis and stage prediction. The absence of labelled behavioural datasets for such problems and the huge amount of variations possible in behaviour makes the problem more challenging. This paper presents a novel multi-level attention based network for multi-modal depression prediction that fuses features from audio, video and text modalities while learning the intra and intermodality relevance. The multi-level attention reinforces overall learning by selecting the most influential features within each modality for the decision making. We perform exhaustive experimentation to create different regression models for audio, video and text modalities. Several fusions models with different configurations are constructed to understand the impact of each feature and modality. We outperform the current baseline by 17.52% in terms of root mean squared error." @default.
- W2981501230 created "2019-11-01" @default.
- W2981501230 creator A5009175236 @default.
- W2981501230 creator A5035140862 @default.
- W2981501230 creator A5049511943 @default.
- W2981501230 creator A5070054881 @default.
- W2981501230 creator A5073906482 @default.
- W2981501230 date "2019-10-15" @default.
- W2981501230 modified "2023-10-10" @default.
- W2981501230 title "Multi-level Attention Network using Text, Audio and Video for Depression Prediction" @default.
- W2981501230 cites W1133916940 @default.
- W2981501230 cites W1454884387 @default.
- W2981501230 cites W2003502731 @default.
- W2981501230 cites W2071513756 @default.
- W2981501230 cites W2277498883 @default.
- W2981501230 cites W2395913652 @default.
- W2981501230 cites W2470957930 @default.
- W2981501230 cites W2510285366 @default.
- W2981501230 cites W2515456817 @default.
- W2981501230 cites W2531271152 @default.
- W2981501230 cites W2558919063 @default.
- W2981501230 cites W2583643061 @default.
- W2981501230 cites W2588367409 @default.
- W2981501230 cites W2740550900 @default.
- W2981501230 cites W2740966010 @default.
- W2981501230 cites W2773200982 @default.
- W2981501230 cites W2805970382 @default.
- W2981501230 cites W2866390897 @default.
- W2981501230 cites W2947642660 @default.
- W2981501230 cites W2981677410 @default.
- W2981501230 cites W309418507 @default.
- W2981501230 doi "https://doi.org/10.1145/3347320.3357697" @default.
- W2981501230 hasPublicationYear "2019" @default.
- W2981501230 type Work @default.
- W2981501230 sameAs 2981501230 @default.
- W2981501230 citedByCount "47" @default.
- W2981501230 countsByYear W29815012302020 @default.
- W2981501230 countsByYear W29815012302021 @default.
- W2981501230 countsByYear W29815012302022 @default.
- W2981501230 countsByYear W29815012302023 @default.
- W2981501230 crossrefType "proceedings-article" @default.
- W2981501230 hasAuthorship W2981501230A5009175236 @default.
- W2981501230 hasAuthorship W2981501230A5035140862 @default.
- W2981501230 hasAuthorship W2981501230A5049511943 @default.
- W2981501230 hasAuthorship W2981501230A5070054881 @default.
- W2981501230 hasAuthorship W2981501230A5073906482 @default.
- W2981501230 hasBestOaLocation W29815012302 @default.
- W2981501230 hasConcept C127220857 @default.
- W2981501230 hasConcept C13895895 @default.
- W2981501230 hasConcept C139719470 @default.
- W2981501230 hasConcept C154945302 @default.
- W2981501230 hasConcept C160372630 @default.
- W2981501230 hasConcept C162324750 @default.
- W2981501230 hasConcept C2776867660 @default.
- W2981501230 hasConcept C28490314 @default.
- W2981501230 hasConcept C41008148 @default.
- W2981501230 hasConcept C49774154 @default.
- W2981501230 hasConcept C64922751 @default.
- W2981501230 hasConceptScore W2981501230C127220857 @default.
- W2981501230 hasConceptScore W2981501230C13895895 @default.
- W2981501230 hasConceptScore W2981501230C139719470 @default.
- W2981501230 hasConceptScore W2981501230C154945302 @default.
- W2981501230 hasConceptScore W2981501230C160372630 @default.
- W2981501230 hasConceptScore W2981501230C162324750 @default.
- W2981501230 hasConceptScore W2981501230C2776867660 @default.
- W2981501230 hasConceptScore W2981501230C28490314 @default.
- W2981501230 hasConceptScore W2981501230C41008148 @default.
- W2981501230 hasConceptScore W2981501230C49774154 @default.
- W2981501230 hasConceptScore W2981501230C64922751 @default.
- W2981501230 hasLocation W29815012301 @default.
- W2981501230 hasLocation W29815012302 @default.
- W2981501230 hasOpenAccess W2981501230 @default.
- W2981501230 hasPrimaryLocation W29815012301 @default.
- W2981501230 hasRelatedWork W1603949574 @default.
- W2981501230 hasRelatedWork W2170815394 @default.
- W2981501230 hasRelatedWork W2353318413 @default.
- W2981501230 hasRelatedWork W2367644294 @default.
- W2981501230 hasRelatedWork W2379113420 @default.
- W2981501230 hasRelatedWork W2604447241 @default.
- W2981501230 hasRelatedWork W2897411159 @default.
- W2981501230 hasRelatedWork W2921688766 @default.
- W2981501230 hasRelatedWork W4283765032 @default.
- W2981501230 hasRelatedWork W4287645044 @default.
- W2981501230 isParatext "false" @default.
- W2981501230 isRetracted "false" @default.
- W2981501230 magId "2981501230" @default.
- W2981501230 workType "article" @default.