Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981558049> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2981558049 abstract "National statistical agencies are regularly required to produce estimates about various subpopulations, formed by demographic and/or geographic classifications, based on a limited number of samples. Traditional direct estimates computed using only sampled data from individual subpopulations are usually unreliable due to small sample sizes. Subpopulations with small samples are termed small areas or small domains. To improve on the less reliable direct estimates, model-based estimates, which borrow information from suitable auxiliary variables, have been extensively proposed in the literature. However, standard model-based estimates rely on the normality assumptions of the error terms. In this research we propose a hierarchical Bayesian (HB) method for the unit-level nested error regression model based on a normal mixture for the unit-level error distribution. To implement our proposal we use a uniform prior for the regression parameters, random effects variance parameter, and the mixing proportion, and we use a partially proper non-informative prior distribution for the two unit-level error variance components in the mixture. We apply our method to two examples to predict summary characteristics of farm products at the small area level. One of the examples is prediction of twelve county-level crop areas cultivated for corn in some Iowa counties. The other example involves total cash associated in farm operations in twenty-seven farming regions in Australia. We compare predictions of small area characteristics based on the proposed method with those obtained by applying the Datta and Ghosh (1991) and the Chakraborty et al. (2018) HB methods. Our simulation study comparing these three Bayesian methods showed the superiority of our proposed method, measured by prediction mean squared error, coverage probabilities and lengths of credible intervals for the small area means." @default.
- W2981558049 created "2019-11-01" @default.
- W2981558049 creator A5053511110 @default.
- W2981558049 creator A5053927473 @default.
- W2981558049 creator A5084419948 @default.
- W2981558049 date "2019-10-28" @default.
- W2981558049 modified "2023-10-15" @default.
- W2981558049 title "A Hierarchical Bayes Unit-Level Small Area Estimation Model for Normal Mixture Populations" @default.
- W2981558049 cites W1582967477 @default.
- W2981558049 cites W2006428009 @default.
- W2981558049 cites W2064276311 @default.
- W2981558049 cites W2097188985 @default.
- W2981558049 hasPublicationYear "2019" @default.
- W2981558049 type Work @default.
- W2981558049 sameAs 2981558049 @default.
- W2981558049 citedByCount "0" @default.
- W2981558049 crossrefType "posted-content" @default.
- W2981558049 hasAuthorship W2981558049A5053511110 @default.
- W2981558049 hasAuthorship W2981558049A5053927473 @default.
- W2981558049 hasAuthorship W2981558049A5084419948 @default.
- W2981558049 hasConcept C105795698 @default.
- W2981558049 hasConcept C107673813 @default.
- W2981558049 hasConcept C121955636 @default.
- W2981558049 hasConcept C122637931 @default.
- W2981558049 hasConcept C124101348 @default.
- W2981558049 hasConcept C129848803 @default.
- W2981558049 hasConcept C129963666 @default.
- W2981558049 hasConcept C144133560 @default.
- W2981558049 hasConcept C144986985 @default.
- W2981558049 hasConcept C145420912 @default.
- W2981558049 hasConcept C149782125 @default.
- W2981558049 hasConcept C152877465 @default.
- W2981558049 hasConcept C177769412 @default.
- W2981558049 hasConcept C185429906 @default.
- W2981558049 hasConcept C196083921 @default.
- W2981558049 hasConcept C207201462 @default.
- W2981558049 hasConcept C2776157432 @default.
- W2981558049 hasConcept C33923547 @default.
- W2981558049 hasConcept C41008148 @default.
- W2981558049 hasConcept C83546350 @default.
- W2981558049 hasConceptScore W2981558049C105795698 @default.
- W2981558049 hasConceptScore W2981558049C107673813 @default.
- W2981558049 hasConceptScore W2981558049C121955636 @default.
- W2981558049 hasConceptScore W2981558049C122637931 @default.
- W2981558049 hasConceptScore W2981558049C124101348 @default.
- W2981558049 hasConceptScore W2981558049C129848803 @default.
- W2981558049 hasConceptScore W2981558049C129963666 @default.
- W2981558049 hasConceptScore W2981558049C144133560 @default.
- W2981558049 hasConceptScore W2981558049C144986985 @default.
- W2981558049 hasConceptScore W2981558049C145420912 @default.
- W2981558049 hasConceptScore W2981558049C149782125 @default.
- W2981558049 hasConceptScore W2981558049C152877465 @default.
- W2981558049 hasConceptScore W2981558049C177769412 @default.
- W2981558049 hasConceptScore W2981558049C185429906 @default.
- W2981558049 hasConceptScore W2981558049C196083921 @default.
- W2981558049 hasConceptScore W2981558049C207201462 @default.
- W2981558049 hasConceptScore W2981558049C2776157432 @default.
- W2981558049 hasConceptScore W2981558049C33923547 @default.
- W2981558049 hasConceptScore W2981558049C41008148 @default.
- W2981558049 hasConceptScore W2981558049C83546350 @default.
- W2981558049 hasLocation W29815580491 @default.
- W2981558049 hasOpenAccess W2981558049 @default.
- W2981558049 hasPrimaryLocation W29815580491 @default.
- W2981558049 hasRelatedWork W107896240 @default.
- W2981558049 hasRelatedWork W1537371881 @default.
- W2981558049 hasRelatedWork W2028592423 @default.
- W2981558049 hasRelatedWork W2058183844 @default.
- W2981558049 hasRelatedWork W2116569388 @default.
- W2981558049 hasRelatedWork W2139829238 @default.
- W2981558049 hasRelatedWork W2182109345 @default.
- W2981558049 hasRelatedWork W2292919742 @default.
- W2981558049 hasRelatedWork W2292939649 @default.
- W2981558049 hasRelatedWork W23219861 @default.
- W2981558049 hasRelatedWork W2414067955 @default.
- W2981558049 hasRelatedWork W2586477480 @default.
- W2981558049 hasRelatedWork W2802025450 @default.
- W2981558049 hasRelatedWork W2913988521 @default.
- W2981558049 hasRelatedWork W3002912660 @default.
- W2981558049 hasRelatedWork W3199773367 @default.
- W2981558049 hasRelatedWork W87718015 @default.
- W2981558049 hasRelatedWork W2040102153 @default.
- W2981558049 hasRelatedWork W2188815797 @default.
- W2981558049 hasRelatedWork W2273920062 @default.
- W2981558049 isParatext "false" @default.
- W2981558049 isRetracted "false" @default.
- W2981558049 magId "2981558049" @default.
- W2981558049 workType "article" @default.