Matches in SemOpenAlex for { <https://semopenalex.org/work/W298156714> ?p ?o ?g. }
- W298156714 endingPage "036013" @default.
- W298156714 startingPage "036013" @default.
- W298156714 abstract "Objective. The main goal of this work is to develop a model for multisensor signals, such as magnetoencephalography or electroencephalography (EEG) signals that account for inter-trial variability, suitable for corresponding binary classification problems. An important constraint is that the model be simple enough to handle small size and unbalanced datasets, as often encountered in BCI-type experiments. Approach. The method involves the linear mixed effects statistical model, wavelet transform, and spatial filtering, and aims at the characterization of localized discriminant features in multisensor signals. After discrete wavelet transform and spatial filtering, a projection onto the relevant wavelet and spatial channels subspaces is used for dimension reduction. The projected signals are then decomposed as the sum of a signal of interest (i.e., discriminant) and background noise, using a very simple Gaussian linear mixed model. Main results. Thanks to the simplicity of the model, the corresponding parameter estimation problem is simplified. Robust estimates of class-covariance matrices are obtained from small sample sizes and an effective Bayes plug-in classifier is derived. The approach is applied to the detection of error potentials in multichannel EEG data in a very unbalanced situation (detection of rare events). Classification results prove the relevance of the proposed approach in such a context. Significance. The combination of the linear mixed model, wavelet transform and spatial filtering for EEG classification is, to the best of our knowledge, an original approach, which is proven to be effective. This paper improves upon earlier results on similar problems, and the three main ingredients all play an important role." @default.
- W298156714 created "2016-06-24" @default.
- W298156714 creator A5024845260 @default.
- W298156714 creator A5043555634 @default.
- W298156714 creator A5062237341 @default.
- W298156714 creator A5083214721 @default.
- W298156714 date "2015-05-14" @default.
- W298156714 modified "2023-10-02" @default.
- W298156714 title "Detecting single-trial EEG evoked potential using a wavelet domain linear mixed model: application to error potentials classification" @default.
- W298156714 cites W153120503 @default.
- W298156714 cites W1547702425 @default.
- W298156714 cites W1965895350 @default.
- W298156714 cites W1990928820 @default.
- W298156714 cites W2001619934 @default.
- W298156714 cites W2004002353 @default.
- W298156714 cites W2010406435 @default.
- W298156714 cites W2014088563 @default.
- W298156714 cites W2033132417 @default.
- W298156714 cites W2049166497 @default.
- W298156714 cites W2058317558 @default.
- W298156714 cites W2071583576 @default.
- W298156714 cites W2071860689 @default.
- W298156714 cites W2075647286 @default.
- W298156714 cites W2097966127 @default.
- W298156714 cites W2098100592 @default.
- W298156714 cites W2099509424 @default.
- W298156714 cites W2103418189 @default.
- W298156714 cites W2104063964 @default.
- W298156714 cites W2105923830 @default.
- W298156714 cites W2110100098 @default.
- W298156714 cites W2112786982 @default.
- W298156714 cites W2118250684 @default.
- W298156714 cites W2122428227 @default.
- W298156714 cites W2122896223 @default.
- W298156714 cites W2125001590 @default.
- W298156714 cites W2127492761 @default.
- W298156714 cites W2130697911 @default.
- W298156714 cites W2141250485 @default.
- W298156714 cites W2142713577 @default.
- W298156714 cites W2152171700 @default.
- W298156714 cites W2154330636 @default.
- W298156714 cites W2158457715 @default.
- W298156714 cites W2164296439 @default.
- W298156714 cites W2168025604 @default.
- W298156714 cites W2787894218 @default.
- W298156714 cites W4206653471 @default.
- W298156714 cites W4242239918 @default.
- W298156714 cites W4255272544 @default.
- W298156714 cites W4300633279 @default.
- W298156714 doi "https://doi.org/10.1088/1741-2560/12/3/036013" @default.
- W298156714 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25973635" @default.
- W298156714 hasPublicationYear "2015" @default.
- W298156714 type Work @default.
- W298156714 sameAs 298156714 @default.
- W298156714 citedByCount "11" @default.
- W298156714 countsByYear W2981567142016 @default.
- W298156714 countsByYear W2981567142017 @default.
- W298156714 countsByYear W2981567142018 @default.
- W298156714 countsByYear W2981567142019 @default.
- W298156714 countsByYear W2981567142020 @default.
- W298156714 countsByYear W2981567142021 @default.
- W298156714 countsByYear W2981567142023 @default.
- W298156714 crossrefType "journal-article" @default.
- W298156714 hasAuthorship W298156714A5024845260 @default.
- W298156714 hasAuthorship W298156714A5043555634 @default.
- W298156714 hasAuthorship W298156714A5062237341 @default.
- W298156714 hasAuthorship W298156714A5083214721 @default.
- W298156714 hasBestOaLocation W2981567142 @default.
- W298156714 hasConcept C153180895 @default.
- W298156714 hasConcept C154945302 @default.
- W298156714 hasConcept C196216189 @default.
- W298156714 hasConcept C33923547 @default.
- W298156714 hasConcept C41008148 @default.
- W298156714 hasConcept C46286280 @default.
- W298156714 hasConcept C47432892 @default.
- W298156714 hasConcept C69738355 @default.
- W298156714 hasConceptScore W298156714C153180895 @default.
- W298156714 hasConceptScore W298156714C154945302 @default.
- W298156714 hasConceptScore W298156714C196216189 @default.
- W298156714 hasConceptScore W298156714C33923547 @default.
- W298156714 hasConceptScore W298156714C41008148 @default.
- W298156714 hasConceptScore W298156714C46286280 @default.
- W298156714 hasConceptScore W298156714C47432892 @default.
- W298156714 hasConceptScore W298156714C69738355 @default.
- W298156714 hasIssue "3" @default.
- W298156714 hasLocation W2981567141 @default.
- W298156714 hasLocation W2981567142 @default.
- W298156714 hasLocation W2981567143 @default.
- W298156714 hasLocation W2981567144 @default.
- W298156714 hasLocation W2981567145 @default.
- W298156714 hasLocation W2981567146 @default.
- W298156714 hasLocation W2981567147 @default.
- W298156714 hasLocation W2981567148 @default.
- W298156714 hasOpenAccess W298156714 @default.
- W298156714 hasPrimaryLocation W2981567141 @default.
- W298156714 hasRelatedWork W1577789985 @default.
- W298156714 hasRelatedWork W1994967090 @default.
- W298156714 hasRelatedWork W2047056993 @default.