Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981576843> ?p ?o ?g. }
- W2981576843 endingPage "275" @default.
- W2981576843 startingPage "263" @default.
- W2981576843 abstract "Three-dimensional (3-D) radar imaging can provide additional information along elevation dimension about the target with respect to the conventional 2-D radar imaging, but usually requires a huge amount of data collected over 3-D frequency-azimuth-elevation space, which motivates us to perform 3-D imaging by using sparsely sampled data. Traditional compressive sensing (CS) based 3-D imaging methods with sparse data convert the 3-D data into a long vector, and then complete the sensing and recovery steps. This 1-D vectorized model, however, faces challenges of high computational complexity and huge memory usage and may not be viable in real applications. In this article, we solve the 3-D sparse imaging problem efficiently in a tensor way. For this aim, we firstly derive the 3-D imaging model from a tensor perspective under some assumptions. Then we review three kinds of sparse data sampling schemes that are common on the existing 3-D compressive radar imaging applications. Subsequently, with the help of prior information hidden in the radar signal, i.e., sparsity and low-rank property, we propose efficient image reconstruction algorithms for different sampling schemes to produce 3-D images with sidelobes and artifacts suppressed significantly. Finally, extensive experiments based on simulated and real-measured datasets are carried out. Results show that the proposed methods can effectively generate competitive images with small reconstruction error even when the data sampling ratio is low, which confirm the validity of proposed methods." @default.
- W2981576843 created "2019-11-01" @default.
- W2981576843 creator A5032254756 @default.
- W2981576843 creator A5060624325 @default.
- W2981576843 creator A5062611131 @default.
- W2981576843 date "2020-01-01" @default.
- W2981576843 modified "2023-09-24" @default.
- W2981576843 title "Tensor Representation for Three-Dimensional Radar Target Imaging With Sparsely Sampled Data" @default.
- W2981576843 cites W1980868405 @default.
- W2981576843 cites W1993767923 @default.
- W2981576843 cites W2024165284 @default.
- W2981576843 cites W2028138958 @default.
- W2981576843 cites W2032885709 @default.
- W2981576843 cites W2047628890 @default.
- W2981576843 cites W2048289234 @default.
- W2981576843 cites W2063463621 @default.
- W2981576843 cites W2082476922 @default.
- W2981576843 cites W2083980441 @default.
- W2981576843 cites W2091449379 @default.
- W2981576843 cites W2096111914 @default.
- W2981576843 cites W2098606209 @default.
- W2981576843 cites W2104735734 @default.
- W2981576843 cites W2119667497 @default.
- W2981576843 cites W2127245912 @default.
- W2981576843 cites W2132233458 @default.
- W2981576843 cites W2133804411 @default.
- W2981576843 cites W2142212280 @default.
- W2981576843 cites W2142225600 @default.
- W2981576843 cites W2143551587 @default.
- W2981576843 cites W2150296982 @default.
- W2981576843 cites W2155684415 @default.
- W2981576843 cites W2168129316 @default.
- W2981576843 cites W2169241381 @default.
- W2981576843 cites W2173845179 @default.
- W2981576843 cites W2309863162 @default.
- W2981576843 cites W2338875331 @default.
- W2981576843 cites W2339232531 @default.
- W2981576843 cites W2418142352 @default.
- W2981576843 cites W2582815032 @default.
- W2981576843 cites W2610885890 @default.
- W2981576843 cites W2611328865 @default.
- W2981576843 cites W2624906345 @default.
- W2981576843 cites W2805552402 @default.
- W2981576843 cites W4250955649 @default.
- W2981576843 doi "https://doi.org/10.1109/tci.2019.2948776" @default.
- W2981576843 hasPublicationYear "2020" @default.
- W2981576843 type Work @default.
- W2981576843 sameAs 2981576843 @default.
- W2981576843 citedByCount "8" @default.
- W2981576843 countsByYear W29815768432021 @default.
- W2981576843 countsByYear W29815768432022 @default.
- W2981576843 crossrefType "journal-article" @default.
- W2981576843 hasAuthorship W2981576843A5032254756 @default.
- W2981576843 hasAuthorship W2981576843A5060624325 @default.
- W2981576843 hasAuthorship W2981576843A5062611131 @default.
- W2981576843 hasConcept C10929652 @default.
- W2981576843 hasConcept C127313418 @default.
- W2981576843 hasConcept C154945302 @default.
- W2981576843 hasConcept C155281189 @default.
- W2981576843 hasConcept C17744445 @default.
- W2981576843 hasConcept C199539241 @default.
- W2981576843 hasConcept C2524010 @default.
- W2981576843 hasConcept C2776359362 @default.
- W2981576843 hasConcept C31972630 @default.
- W2981576843 hasConcept C33923547 @default.
- W2981576843 hasConcept C41008148 @default.
- W2981576843 hasConcept C554190296 @default.
- W2981576843 hasConcept C62649853 @default.
- W2981576843 hasConcept C76155785 @default.
- W2981576843 hasConcept C94625758 @default.
- W2981576843 hasConceptScore W2981576843C10929652 @default.
- W2981576843 hasConceptScore W2981576843C127313418 @default.
- W2981576843 hasConceptScore W2981576843C154945302 @default.
- W2981576843 hasConceptScore W2981576843C155281189 @default.
- W2981576843 hasConceptScore W2981576843C17744445 @default.
- W2981576843 hasConceptScore W2981576843C199539241 @default.
- W2981576843 hasConceptScore W2981576843C2524010 @default.
- W2981576843 hasConceptScore W2981576843C2776359362 @default.
- W2981576843 hasConceptScore W2981576843C31972630 @default.
- W2981576843 hasConceptScore W2981576843C33923547 @default.
- W2981576843 hasConceptScore W2981576843C41008148 @default.
- W2981576843 hasConceptScore W2981576843C554190296 @default.
- W2981576843 hasConceptScore W2981576843C62649853 @default.
- W2981576843 hasConceptScore W2981576843C76155785 @default.
- W2981576843 hasConceptScore W2981576843C94625758 @default.
- W2981576843 hasFunder F4320321001 @default.
- W2981576843 hasLocation W29815768431 @default.
- W2981576843 hasOpenAccess W2981576843 @default.
- W2981576843 hasPrimaryLocation W29815768431 @default.
- W2981576843 hasRelatedWork W1537845529 @default.
- W2981576843 hasRelatedWork W1585281834 @default.
- W2981576843 hasRelatedWork W2006246348 @default.
- W2981576843 hasRelatedWork W2051339147 @default.
- W2981576843 hasRelatedWork W2091422131 @default.
- W2981576843 hasRelatedWork W2105285211 @default.
- W2981576843 hasRelatedWork W2116394631 @default.
- W2981576843 hasRelatedWork W2116555895 @default.
- W2981576843 hasRelatedWork W2352804472 @default.