Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981601878> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2981601878 abstract "In this paper, we study random Blaschke products, acting on the unit circle, and consider the cocycle of Perron-Frobenius operators acting on Banach spaces of analytic functions on an annulus. We completely describe the Lyapunov spectrum of these cocycles. As a corollary, we obtain a simple random Blaschke product system where the Perron-Frobenius cocycle has infinitely many distinct Lyapunov exponents, but where arbitrarily small natural perturbations cause a complete collapse of the Lyapunov spectrum, except for the exponent 0 associated with the absolutely continuous invariant measure. That is, under perturbations, the Lyapunov exponents become 0 with multiplicity 1, and $-infty$ with infinite multiplicity. This is superficially similar to the finite-dimensional phenomenon, discovered by Bochi cite{Bochi-thesis}, that away from the uniformly hyperbolic setting, small perturbations can lead to a collapse of the Lyapunov spectrum to zero. In this paper, however, the cocycle and its perturbation are explicitly described; and further, the mechanism for collapse is quite different. We study stability of the Perron-Frobenius cocycles arising from general random Blaschke products. We give a necessary and sufficient criterion for stability of the Lyapunov spectrum in terms of the derivative of the random Blaschke product at its random fixed point, and use this to show that an open dense set of Blaschke product cocycles have hyperbolic Perron-Frobenius cocycles. In the final part, we prove a relationship between the Lyapunov spectrum of a single cocycle acting on two different Banach spaces, allowing us to draw conclusions for the same cocycles acting on $C^r$ functions spaces." @default.
- W2981601878 created "2019-11-01" @default.
- W2981601878 creator A5058513062 @default.
- W2981601878 creator A5079769493 @default.
- W2981601878 date "2018-06-22" @default.
- W2981601878 modified "2023-09-27" @default.
- W2981601878 title "Collapse of the Lyapunov spectrum for Perron-Frobenius operator cocycles" @default.
- W2981601878 hasPublicationYear "2018" @default.
- W2981601878 type Work @default.
- W2981601878 sameAs 2981601878 @default.
- W2981601878 citedByCount "0" @default.
- W2981601878 crossrefType "posted-content" @default.
- W2981601878 hasAuthorship W2981601878A5058513062 @default.
- W2981601878 hasAuthorship W2981601878A5079769493 @default.
- W2981601878 hasConcept C121332964 @default.
- W2981601878 hasConcept C132954091 @default.
- W2981601878 hasConcept C134306372 @default.
- W2981601878 hasConcept C156004811 @default.
- W2981601878 hasConcept C156778621 @default.
- W2981601878 hasConcept C158622935 @default.
- W2981601878 hasConcept C191544260 @default.
- W2981601878 hasConcept C202444582 @default.
- W2981601878 hasConcept C33923547 @default.
- W2981601878 hasConcept C60640748 @default.
- W2981601878 hasConcept C61518182 @default.
- W2981601878 hasConcept C62520636 @default.
- W2981601878 hasConceptScore W2981601878C121332964 @default.
- W2981601878 hasConceptScore W2981601878C132954091 @default.
- W2981601878 hasConceptScore W2981601878C134306372 @default.
- W2981601878 hasConceptScore W2981601878C156004811 @default.
- W2981601878 hasConceptScore W2981601878C156778621 @default.
- W2981601878 hasConceptScore W2981601878C158622935 @default.
- W2981601878 hasConceptScore W2981601878C191544260 @default.
- W2981601878 hasConceptScore W2981601878C202444582 @default.
- W2981601878 hasConceptScore W2981601878C33923547 @default.
- W2981601878 hasConceptScore W2981601878C60640748 @default.
- W2981601878 hasConceptScore W2981601878C61518182 @default.
- W2981601878 hasConceptScore W2981601878C62520636 @default.
- W2981601878 hasLocation W29816018781 @default.
- W2981601878 hasOpenAccess W2981601878 @default.
- W2981601878 hasPrimaryLocation W29816018781 @default.
- W2981601878 hasRelatedWork W1908486378 @default.
- W2981601878 hasRelatedWork W1986590954 @default.
- W2981601878 hasRelatedWork W1993514703 @default.
- W2981601878 hasRelatedWork W2048241281 @default.
- W2981601878 hasRelatedWork W2074467994 @default.
- W2981601878 hasRelatedWork W2126774928 @default.
- W2981601878 hasRelatedWork W2129912624 @default.
- W2981601878 hasRelatedWork W2477666748 @default.
- W2981601878 hasRelatedWork W2517593408 @default.
- W2981601878 hasRelatedWork W2571267400 @default.
- W2981601878 hasRelatedWork W2777857368 @default.
- W2981601878 hasRelatedWork W2798480420 @default.
- W2981601878 hasRelatedWork W2901030326 @default.
- W2981601878 hasRelatedWork W2950999566 @default.
- W2981601878 hasRelatedWork W2964275815 @default.
- W2981601878 hasRelatedWork W2992304969 @default.
- W2981601878 hasRelatedWork W3103198105 @default.
- W2981601878 hasRelatedWork W3103895714 @default.
- W2981601878 hasRelatedWork W3170596679 @default.
- W2981601878 hasRelatedWork W3205605186 @default.
- W2981601878 isParatext "false" @default.
- W2981601878 isRetracted "false" @default.
- W2981601878 magId "2981601878" @default.
- W2981601878 workType "article" @default.