Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981639585> ?p ?o ?g. }
- W2981639585 endingPage "826" @default.
- W2981639585 startingPage "817" @default.
- W2981639585 abstract "A model for the prediction of research octane number (RON) and motor octane number (MON) of hydrocarbon mixtures and gasoline–ethanol blends has been developed based on infrared spectroscopy data of pure components. Infrared spectra for 61 neat hydrocarbon species were used to generate spectra of 148 hydrocarbon blends by averaging the spectra of their pure components on a molar basis. The spectra of 38 FACE (fuels for advanced combustion engines) gasoline blends were calculated using PIONA (paraffin, isoparaffin, olefin, naphthene, and aromatic) class averages of the pure components. The study sheds light on the significance of dimensional reduction of spectra and shows how it can be used to extract scores with linear correlations to the following important features: molecular weight, paraffinic CH3 groups, paraffinic CH2 groups, paraffinic CH groups, olefinic −CH═CH2 groups, naphthenic CH–CH2 groups, aromatic C–CH groups, ethanolic OH groups, and branching index. Both scores and features can be used as input to predict octane numbers through nonlinear regression. Artificial neural network (ANN) was found to be the optimal method where the mean absolute error on a randomly selected test set was within the experimental uncertainty of RON, MON, and octane sensitivity." @default.
- W2981639585 created "2019-11-01" @default.
- W2981639585 creator A5031019617 @default.
- W2981639585 creator A5051525030 @default.
- W2981639585 date "2019-10-22" @default.
- W2981639585 modified "2023-10-12" @default.
- W2981639585 title "Octane Prediction from Infrared Spectroscopic Data" @default.
- W2981639585 cites W1487582509 @default.
- W2981639585 cites W1657583423 @default.
- W2981639585 cites W1967397435 @default.
- W2981639585 cites W1970854531 @default.
- W2981639585 cites W1975352887 @default.
- W2981639585 cites W1980432509 @default.
- W2981639585 cites W1983168408 @default.
- W2981639585 cites W1992866414 @default.
- W2981639585 cites W2002228956 @default.
- W2981639585 cites W2006578213 @default.
- W2981639585 cites W2016636071 @default.
- W2981639585 cites W2016686136 @default.
- W2981639585 cites W2019660969 @default.
- W2981639585 cites W2022642999 @default.
- W2981639585 cites W2026830983 @default.
- W2981639585 cites W2037411416 @default.
- W2981639585 cites W2043189291 @default.
- W2981639585 cites W2049161685 @default.
- W2981639585 cites W2054245162 @default.
- W2981639585 cites W2055061314 @default.
- W2981639585 cites W2070101886 @default.
- W2981639585 cites W2077779685 @default.
- W2981639585 cites W2080771795 @default.
- W2981639585 cites W2081429926 @default.
- W2981639585 cites W2081986563 @default.
- W2981639585 cites W2085073978 @default.
- W2981639585 cites W2086904394 @default.
- W2981639585 cites W2099171825 @default.
- W2981639585 cites W2140959043 @default.
- W2981639585 cites W2143908786 @default.
- W2981639585 cites W2162384717 @default.
- W2981639585 cites W2165639001 @default.
- W2981639585 cites W2257397161 @default.
- W2981639585 cites W2275846292 @default.
- W2981639585 cites W2334725585 @default.
- W2981639585 cites W2336257993 @default.
- W2981639585 cites W2346217211 @default.
- W2981639585 cites W2378433297 @default.
- W2981639585 cites W2415768042 @default.
- W2981639585 cites W2462646109 @default.
- W2981639585 cites W2584829707 @default.
- W2981639585 cites W2726753168 @default.
- W2981639585 cites W2739125368 @default.
- W2981639585 cites W2757320183 @default.
- W2981639585 cites W2773411653 @default.
- W2981639585 cites W2802982083 @default.
- W2981639585 cites W2954836613 @default.
- W2981639585 cites W4233113553 @default.
- W2981639585 cites W4239510810 @default.
- W2981639585 cites W4244392748 @default.
- W2981639585 cites W4244615948 @default.
- W2981639585 doi "https://doi.org/10.1021/acs.energyfuels.9b02816" @default.
- W2981639585 hasPublicationYear "2019" @default.
- W2981639585 type Work @default.
- W2981639585 sameAs 2981639585 @default.
- W2981639585 citedByCount "19" @default.
- W2981639585 countsByYear W29816395852020 @default.
- W2981639585 countsByYear W29816395852021 @default.
- W2981639585 countsByYear W29816395852022 @default.
- W2981639585 countsByYear W29816395852023 @default.
- W2981639585 crossrefType "journal-article" @default.
- W2981639585 hasAuthorship W2981639585A5031019617 @default.
- W2981639585 hasAuthorship W2981639585A5051525030 @default.
- W2981639585 hasBestOaLocation W29816395852 @default.
- W2981639585 hasConcept C103697071 @default.
- W2981639585 hasConcept C105923489 @default.
- W2981639585 hasConcept C113196181 @default.
- W2981639585 hasConcept C149629883 @default.
- W2981639585 hasConcept C153642686 @default.
- W2981639585 hasConcept C163721339 @default.
- W2981639585 hasConcept C178790620 @default.
- W2981639585 hasConcept C185592680 @default.
- W2981639585 hasConcept C206175624 @default.
- W2981639585 hasConcept C2776624427 @default.
- W2981639585 hasConcept C2776692518 @default.
- W2981639585 hasConcept C2777207669 @default.
- W2981639585 hasConcept C2777720266 @default.
- W2981639585 hasConcept C51886252 @default.
- W2981639585 hasConcept C521977710 @default.
- W2981639585 hasConceptScore W2981639585C103697071 @default.
- W2981639585 hasConceptScore W2981639585C105923489 @default.
- W2981639585 hasConceptScore W2981639585C113196181 @default.
- W2981639585 hasConceptScore W2981639585C149629883 @default.
- W2981639585 hasConceptScore W2981639585C153642686 @default.
- W2981639585 hasConceptScore W2981639585C163721339 @default.
- W2981639585 hasConceptScore W2981639585C178790620 @default.
- W2981639585 hasConceptScore W2981639585C185592680 @default.
- W2981639585 hasConceptScore W2981639585C206175624 @default.
- W2981639585 hasConceptScore W2981639585C2776624427 @default.
- W2981639585 hasConceptScore W2981639585C2776692518 @default.
- W2981639585 hasConceptScore W2981639585C2777207669 @default.