Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981657506> ?p ?o ?g. }
- W2981657506 endingPage "213" @default.
- W2981657506 startingPage "201" @default.
- W2981657506 abstract "Abstract Anxiety disorders pose an enormous burden on affected individuals and societies. Evidence-based psychotherapeutic and pharmacological treatments exist; yet, not all patients respond equally well. The emerging paradigm of personalized medicine in mental health aims to offer solutions for those vulnerable patient groups by better matching patient characteristics to custom-tailored treatment approaches. Novel technologies based on machine learning and artificial intelligence allow for predictions on the individual patient level—a necessary prerequisite for personalizing treatments. This chapter will outline the current state of evidence regarding predictive biomarkers and mechanisms of treatment (non)response in anxiety disordered patients, followed by an executive summary on the current status quo and future challenges in the field of predictive analytics. Artificial intelligence in mental health may bear the potential to foster clinical applicability of neuroscience-informed research and to bridge the translational gap between clinical research and practice." @default.
- W2981657506 created "2019-11-01" @default.
- W2981657506 creator A5011492116 @default.
- W2981657506 creator A5055279410 @default.
- W2981657506 date "2020-01-01" @default.
- W2981657506 modified "2023-09-26" @default.
- W2981657506 title "Personalized mental health: Artificial intelligence technologies for treatment response prediction in anxiety disorders" @default.
- W2981657506 cites W1146031118 @default.
- W2981657506 cites W1512745453 @default.
- W2981657506 cites W1913150253 @default.
- W2981657506 cites W1969956173 @default.
- W2981657506 cites W1969959732 @default.
- W2981657506 cites W1976357293 @default.
- W2981657506 cites W1977465442 @default.
- W2981657506 cites W1980991473 @default.
- W2981657506 cites W1984615306 @default.
- W2981657506 cites W2002972684 @default.
- W2981657506 cites W2003186803 @default.
- W2981657506 cites W2009242258 @default.
- W2981657506 cites W2016117011 @default.
- W2981657506 cites W2018255469 @default.
- W2981657506 cites W2019482671 @default.
- W2981657506 cites W2027032265 @default.
- W2981657506 cites W2036735145 @default.
- W2981657506 cites W2073814621 @default.
- W2981657506 cites W2088525127 @default.
- W2981657506 cites W2093065590 @default.
- W2981657506 cites W2100178612 @default.
- W2981657506 cites W2110747672 @default.
- W2981657506 cites W2111849437 @default.
- W2981657506 cites W2111978790 @default.
- W2981657506 cites W2116610585 @default.
- W2981657506 cites W2118164359 @default.
- W2981657506 cites W2128667519 @default.
- W2981657506 cites W2129029967 @default.
- W2981657506 cites W2131387793 @default.
- W2981657506 cites W2131786905 @default.
- W2981657506 cites W2144269887 @default.
- W2981657506 cites W2148874864 @default.
- W2981657506 cites W2152656267 @default.
- W2981657506 cites W2156743186 @default.
- W2981657506 cites W2162196924 @default.
- W2981657506 cites W2162541816 @default.
- W2981657506 cites W2299984981 @default.
- W2981657506 cites W2310177520 @default.
- W2981657506 cites W2328700233 @default.
- W2981657506 cites W2341692630 @default.
- W2981657506 cites W2346528861 @default.
- W2981657506 cites W2365675680 @default.
- W2981657506 cites W2409263803 @default.
- W2981657506 cites W2410217693 @default.
- W2981657506 cites W2411278360 @default.
- W2981657506 cites W2519269276 @default.
- W2981657506 cites W2551056916 @default.
- W2981657506 cites W2555107623 @default.
- W2981657506 cites W2563369338 @default.
- W2981657506 cites W2590328111 @default.
- W2981657506 cites W2591920123 @default.
- W2981657506 cites W2600118519 @default.
- W2981657506 cites W2601834048 @default.
- W2981657506 cites W2604061689 @default.
- W2981657506 cites W2618230098 @default.
- W2981657506 cites W2740275732 @default.
- W2981657506 cites W2755687133 @default.
- W2981657506 cites W2772690159 @default.
- W2981657506 cites W28497082 @default.
- W2981657506 cites W400175772 @default.
- W2981657506 cites W4243384253 @default.
- W2981657506 doi "https://doi.org/10.1016/b978-0-12-813176-3.00017-1" @default.
- W2981657506 hasPublicationYear "2020" @default.
- W2981657506 type Work @default.
- W2981657506 sameAs 2981657506 @default.
- W2981657506 citedByCount "1" @default.
- W2981657506 countsByYear W29816575062022 @default.
- W2981657506 crossrefType "book-chapter" @default.
- W2981657506 hasAuthorship W2981657506A5011492116 @default.
- W2981657506 hasAuthorship W2981657506A5055279410 @default.
- W2981657506 hasConcept C118552586 @default.
- W2981657506 hasConcept C134362201 @default.
- W2981657506 hasConcept C154945302 @default.
- W2981657506 hasConcept C15744967 @default.
- W2981657506 hasConcept C41008148 @default.
- W2981657506 hasConcept C558461103 @default.
- W2981657506 hasConcept C70410870 @default.
- W2981657506 hasConceptScore W2981657506C118552586 @default.
- W2981657506 hasConceptScore W2981657506C134362201 @default.
- W2981657506 hasConceptScore W2981657506C154945302 @default.
- W2981657506 hasConceptScore W2981657506C15744967 @default.
- W2981657506 hasConceptScore W2981657506C41008148 @default.
- W2981657506 hasConceptScore W2981657506C558461103 @default.
- W2981657506 hasConceptScore W2981657506C70410870 @default.
- W2981657506 hasLocation W29816575061 @default.
- W2981657506 hasOpenAccess W2981657506 @default.
- W2981657506 hasPrimaryLocation W29816575061 @default.
- W2981657506 hasRelatedWork W2001116168 @default.
- W2981657506 hasRelatedWork W2068050964 @default.
- W2981657506 hasRelatedWork W2134151402 @default.
- W2981657506 hasRelatedWork W2147414888 @default.