Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981733351> ?p ?o ?g. }
- W2981733351 endingPage "e0214168" @default.
- W2981733351 startingPage "e0214168" @default.
- W2981733351 abstract "Bioacoustic sensors, sometimes known as autonomous recording units (ARUs), can record sounds of wildlife over long periods of time in scalable and minimally invasive ways. Deriving per-species abundance estimates from these sensors requires detection, classification, and quantification of animal vocalizations as individual acoustic events. Yet, variability in ambient noise, both over time and across sensors, hinders the reliability of current automated systems for sound event detection (SED), such as convolutional neural networks (CNN) in the time-frequency domain. In this article, we develop, benchmark, and combine several machine listening techniques to improve the generalizability of SED models across heterogeneous acoustic environments. As a case study, we consider the problem of detecting avian flight calls from a ten-hour recording of nocturnal bird migration, recorded by a network of six ARUs in the presence of heterogeneous background noise. Starting from a CNN yielding state-of-the-art accuracy on this task, we introduce two noise adaptation techniques, respectively integrating short-term (60 milliseconds) and long-term (30 minutes) context. First, we apply per-channel energy normalization (PCEN) in the time-frequency domain, which applies short-term automatic gain control to every subband in the mel-frequency spectrogram. Secondly, we replace the last dense layer in the network by a context-adaptive neural network (CA-NN) layer. Combining them yields state-of-the-art results that are unmatched by artificial data augmentation alone. We release a pre-trained version of our best performing system under the name of BirdVoxDetect, a ready-to-use detector of avian flight calls in field recordings." @default.
- W2981733351 created "2019-11-01" @default.
- W2981733351 creator A5027789239 @default.
- W2981733351 creator A5028426061 @default.
- W2981733351 creator A5031398497 @default.
- W2981733351 creator A5037548450 @default.
- W2981733351 creator A5090261891 @default.
- W2981733351 date "2019-10-24" @default.
- W2981733351 modified "2023-10-17" @default.
- W2981733351 title "Robust sound event detection in bioacoustic sensor networks" @default.
- W2981733351 cites W1571447047 @default.
- W2981733351 cites W1587644769 @default.
- W2981733351 cites W1647217187 @default.
- W2981733351 cites W1690194373 @default.
- W2981733351 cites W1754457604 @default.
- W2981733351 cites W1882460546 @default.
- W2981733351 cites W1971306837 @default.
- W2981733351 cites W1971700825 @default.
- W2981733351 cites W1982320825 @default.
- W2981733351 cites W1987711601 @default.
- W2981733351 cites W1990093930 @default.
- W2981733351 cites W1999781514 @default.
- W2981733351 cites W2002850343 @default.
- W2981733351 cites W2008607307 @default.
- W2981733351 cites W2012327117 @default.
- W2981733351 cites W2024001586 @default.
- W2981733351 cites W2038484192 @default.
- W2981733351 cites W2049194842 @default.
- W2981733351 cites W2050327842 @default.
- W2981733351 cites W2058287461 @default.
- W2981733351 cites W2086384421 @default.
- W2981733351 cites W2093393699 @default.
- W2981733351 cites W2094245104 @default.
- W2981733351 cites W2104865696 @default.
- W2981733351 cites W2110640436 @default.
- W2981733351 cites W2114112478 @default.
- W2981733351 cites W2114455599 @default.
- W2981733351 cites W2124106809 @default.
- W2981733351 cites W2136738044 @default.
- W2981733351 cites W2140304104 @default.
- W2981733351 cites W2157529519 @default.
- W2981733351 cites W2162654459 @default.
- W2981733351 cites W2171462040 @default.
- W2981733351 cites W2172582947 @default.
- W2981733351 cites W2328444730 @default.
- W2981733351 cites W2397725648 @default.
- W2981733351 cites W2403438050 @default.
- W2981733351 cites W2511989065 @default.
- W2981733351 cites W2514021858 @default.
- W2981733351 cites W2518102674 @default.
- W2981733351 cites W2547699899 @default.
- W2981733351 cites W2550932130 @default.
- W2981733351 cites W2552032035 @default.
- W2981733351 cites W2592730790 @default.
- W2981733351 cites W2593610980 @default.
- W2981733351 cites W2601564443 @default.
- W2981733351 cites W2620118502 @default.
- W2981733351 cites W2680737492 @default.
- W2981733351 cites W2703224471 @default.
- W2981733351 cites W2732945121 @default.
- W2981733351 cites W2745791297 @default.
- W2981733351 cites W2757154355 @default.
- W2981733351 cites W2758665125 @default.
- W2981733351 cites W2758870122 @default.
- W2981733351 cites W2759176740 @default.
- W2981733351 cites W2764236610 @default.
- W2981733351 cites W2765532459 @default.
- W2981733351 cites W2766164840 @default.
- W2981733351 cites W2766759063 @default.
- W2981733351 cites W2771361008 @default.
- W2981733351 cites W2791636785 @default.
- W2981733351 cites W2793134400 @default.
- W2981733351 cites W2794215233 @default.
- W2981733351 cites W2796458509 @default.
- W2981733351 cites W2808812547 @default.
- W2981733351 cites W2886395056 @default.
- W2981733351 cites W2887273813 @default.
- W2981733351 cites W2890012819 @default.
- W2981733351 cites W2890211809 @default.
- W2981733351 cites W2899201823 @default.
- W2981733351 cites W2906658932 @default.
- W2981733351 cites W2945399614 @default.
- W2981733351 cites W2963414149 @default.
- W2981733351 cites W2963701934 @default.
- W2981733351 cites W2963881567 @default.
- W2981733351 cites W2964163358 @default.
- W2981733351 cites W3098357269 @default.
- W2981733351 cites W4244373874 @default.
- W2981733351 doi "https://doi.org/10.1371/journal.pone.0214168" @default.
- W2981733351 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6812790" @default.
- W2981733351 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31647815" @default.
- W2981733351 hasPublicationYear "2019" @default.
- W2981733351 type Work @default.
- W2981733351 sameAs 2981733351 @default.
- W2981733351 citedByCount "56" @default.
- W2981733351 countsByYear W29817333512019 @default.
- W2981733351 countsByYear W29817333512020 @default.
- W2981733351 countsByYear W29817333512021 @default.