Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981832887> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2981832887 abstract "This research presents NLP-Opt, an Auto-ML technique for optimizing pipelines of machine learning algorithms that can be applied to different Natural Language Processing tasks. The process of selecting the algorithms and their parameters is modelled as an optimization problem and a technique was proposed to find an optimal combination based on the metaheuristic Population-Based Incremental Learning (PBIL). For validation purposes, this approach is applied to a standard opinion mining problem. NLP-Opt effectively optimizes the algorithms and parameters of pipelines. Additionally, NLP-Opt outputs probabilistic information about the optimization process, revealing the most relevant components of pipelines. The proposed technique can be applied to different Natural Language Processing problems, and the information provided by NLP-Opt can be used by researchers to gain insights on the characteristics of the best-performing pipelines. The source code is made available for other researchers. In contrast with other Auto-ML approaches, NLP-Opt provides a flexible mechanism for designing generic pipelines that can be applied to NLP problems. Furthermore, the use of the probabilistic model provides a more comprehensive approach to the Auto-ML problem that enriches researcher understanding of the possible solutions." @default.
- W2981832887 created "2019-11-01" @default.
- W2981832887 creator A5008609009 @default.
- W2981832887 creator A5010783785 @default.
- W2981832887 creator A5035591074 @default.
- W2981832887 creator A5089001187 @default.
- W2981832887 date "2019-01-01" @default.
- W2981832887 modified "2023-09-29" @default.
- W2981832887 title "Optimizing Natural Language Processing Pipelines: Opinion Mining Case Study" @default.
- W2981832887 cites W1979432867 @default.
- W2981832887 cites W2102539288 @default.
- W2981832887 cites W2112364454 @default.
- W2981832887 cites W2123442489 @default.
- W2981832887 cites W2137077888 @default.
- W2981832887 cites W2508503857 @default.
- W2981832887 cites W2604766410 @default.
- W2981832887 cites W2610222147 @default.
- W2981832887 cites W2797648991 @default.
- W2981832887 cites W2809880372 @default.
- W2981832887 cites W2916132663 @default.
- W2981832887 cites W2947123069 @default.
- W2981832887 cites W4205184193 @default.
- W2981832887 doi "https://doi.org/10.1007/978-3-030-33904-3_15" @default.
- W2981832887 hasPublicationYear "2019" @default.
- W2981832887 type Work @default.
- W2981832887 sameAs 2981832887 @default.
- W2981832887 citedByCount "0" @default.
- W2981832887 crossrefType "book-chapter" @default.
- W2981832887 hasAuthorship W2981832887A5008609009 @default.
- W2981832887 hasAuthorship W2981832887A5010783785 @default.
- W2981832887 hasAuthorship W2981832887A5035591074 @default.
- W2981832887 hasAuthorship W2981832887A5089001187 @default.
- W2981832887 hasConcept C109718341 @default.
- W2981832887 hasConcept C119857082 @default.
- W2981832887 hasConcept C124101348 @default.
- W2981832887 hasConcept C127413603 @default.
- W2981832887 hasConcept C144024400 @default.
- W2981832887 hasConcept C149923435 @default.
- W2981832887 hasConcept C154945302 @default.
- W2981832887 hasConcept C175309249 @default.
- W2981832887 hasConcept C195324797 @default.
- W2981832887 hasConcept C199360897 @default.
- W2981832887 hasConcept C204321447 @default.
- W2981832887 hasConcept C2908647359 @default.
- W2981832887 hasConcept C41008148 @default.
- W2981832887 hasConcept C43521106 @default.
- W2981832887 hasConcept C49937458 @default.
- W2981832887 hasConcept C66402592 @default.
- W2981832887 hasConcept C87717796 @default.
- W2981832887 hasConcept C98045186 @default.
- W2981832887 hasConceptScore W2981832887C109718341 @default.
- W2981832887 hasConceptScore W2981832887C119857082 @default.
- W2981832887 hasConceptScore W2981832887C124101348 @default.
- W2981832887 hasConceptScore W2981832887C127413603 @default.
- W2981832887 hasConceptScore W2981832887C144024400 @default.
- W2981832887 hasConceptScore W2981832887C149923435 @default.
- W2981832887 hasConceptScore W2981832887C154945302 @default.
- W2981832887 hasConceptScore W2981832887C175309249 @default.
- W2981832887 hasConceptScore W2981832887C195324797 @default.
- W2981832887 hasConceptScore W2981832887C199360897 @default.
- W2981832887 hasConceptScore W2981832887C204321447 @default.
- W2981832887 hasConceptScore W2981832887C2908647359 @default.
- W2981832887 hasConceptScore W2981832887C41008148 @default.
- W2981832887 hasConceptScore W2981832887C43521106 @default.
- W2981832887 hasConceptScore W2981832887C49937458 @default.
- W2981832887 hasConceptScore W2981832887C66402592 @default.
- W2981832887 hasConceptScore W2981832887C87717796 @default.
- W2981832887 hasConceptScore W2981832887C98045186 @default.
- W2981832887 hasLocation W29818328871 @default.
- W2981832887 hasOpenAccess W2981832887 @default.
- W2981832887 hasPrimaryLocation W29818328871 @default.
- W2981832887 hasRelatedWork W1463197156 @default.
- W2981832887 hasRelatedWork W1586738818 @default.
- W2981832887 hasRelatedWork W2365918773 @default.
- W2981832887 hasRelatedWork W2894570593 @default.
- W2981832887 hasRelatedWork W2948139051 @default.
- W2981832887 hasRelatedWork W2981832887 @default.
- W2981832887 hasRelatedWork W3030272936 @default.
- W2981832887 hasRelatedWork W3208943668 @default.
- W2981832887 hasRelatedWork W3210635025 @default.
- W2981832887 hasRelatedWork W74549420 @default.
- W2981832887 isParatext "false" @default.
- W2981832887 isRetracted "false" @default.
- W2981832887 magId "2981832887" @default.
- W2981832887 workType "book-chapter" @default.