Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981892560> ?p ?o ?g. }
- W2981892560 abstract "Separating an audio scene such as a cocktail party into constituent, meaningful components is a core task in computer audition. Deep networks are the state-of-the-art approach. They are trained on synthetic mixtures of audio made from isolated sound source recordings so that ground truth for the separation is known. However, the vast majority of available audio is not isolated. The brain uses primitive cues that are independent of the characteristics of any particular sound source to perform an initial segmentation of the audio scene. We present a method for bootstrapping a deep model for music source separation without ground truth by using multiple primitive cues. We apply our method to train a network on a large set of unlabeled music recordings from YouTube to separate vocals from accompaniment without the need for ground truth isolated sources or artificial training mixtures." @default.
- W2981892560 created "2019-11-01" @default.
- W2981892560 creator A5023673004 @default.
- W2981892560 creator A5027406828 @default.
- W2981892560 creator A5076453358 @default.
- W2981892560 creator A5086940921 @default.
- W2981892560 date "2019-10-23" @default.
- W2981892560 modified "2023-09-27" @default.
- W2981892560 title "Bootstrapping deep music separation from primitive auditory grouping principles." @default.
- W2981892560 cites W1522301498 @default.
- W2981892560 cites W1561135842 @default.
- W2981892560 cites W1964538581 @default.
- W2981892560 cites W1965581401 @default.
- W2981892560 cites W1976069042 @default.
- W2981892560 cites W1987971958 @default.
- W2981892560 cites W2011430131 @default.
- W2981892560 cites W2062710265 @default.
- W2981892560 cites W2090681206 @default.
- W2981892560 cites W2106631236 @default.
- W2981892560 cites W2129116669 @default.
- W2981892560 cites W2151785180 @default.
- W2981892560 cites W2221409856 @default.
- W2981892560 cites W2285559681 @default.
- W2981892560 cites W2315268655 @default.
- W2981892560 cites W2403680808 @default.
- W2981892560 cites W2552071709 @default.
- W2981892560 cites W2771189179 @default.
- W2981892560 cites W2773594497 @default.
- W2981892560 cites W2891405874 @default.
- W2981892560 cites W2899515918 @default.
- W2981892560 cites W2929050606 @default.
- W2981892560 cites W2962753171 @default.
- W2981892560 cites W2963992487 @default.
- W2981892560 cites W2964058413 @default.
- W2981892560 cites W2964237233 @default.
- W2981892560 hasPublicationYear "2019" @default.
- W2981892560 type Work @default.
- W2981892560 sameAs 2981892560 @default.
- W2981892560 citedByCount "2" @default.
- W2981892560 countsByYear W29818925602021 @default.
- W2981892560 crossrefType "posted-content" @default.
- W2981892560 hasAuthorship W2981892560A5023673004 @default.
- W2981892560 hasAuthorship W2981892560A5027406828 @default.
- W2981892560 hasAuthorship W2981892560A5076453358 @default.
- W2981892560 hasAuthorship W2981892560A5086940921 @default.
- W2981892560 hasConcept C119857082 @default.
- W2981892560 hasConcept C146849305 @default.
- W2981892560 hasConcept C149782125 @default.
- W2981892560 hasConcept C154945302 @default.
- W2981892560 hasConcept C162324750 @default.
- W2981892560 hasConcept C177264268 @default.
- W2981892560 hasConcept C187736073 @default.
- W2981892560 hasConcept C199360897 @default.
- W2981892560 hasConcept C207609745 @default.
- W2981892560 hasConcept C2776061190 @default.
- W2981892560 hasConcept C2776864781 @default.
- W2981892560 hasConcept C2780451532 @default.
- W2981892560 hasConcept C28490314 @default.
- W2981892560 hasConcept C33923547 @default.
- W2981892560 hasConcept C41008148 @default.
- W2981892560 hasConcept C89600930 @default.
- W2981892560 hasConceptScore W2981892560C119857082 @default.
- W2981892560 hasConceptScore W2981892560C146849305 @default.
- W2981892560 hasConceptScore W2981892560C149782125 @default.
- W2981892560 hasConceptScore W2981892560C154945302 @default.
- W2981892560 hasConceptScore W2981892560C162324750 @default.
- W2981892560 hasConceptScore W2981892560C177264268 @default.
- W2981892560 hasConceptScore W2981892560C187736073 @default.
- W2981892560 hasConceptScore W2981892560C199360897 @default.
- W2981892560 hasConceptScore W2981892560C207609745 @default.
- W2981892560 hasConceptScore W2981892560C2776061190 @default.
- W2981892560 hasConceptScore W2981892560C2776864781 @default.
- W2981892560 hasConceptScore W2981892560C2780451532 @default.
- W2981892560 hasConceptScore W2981892560C28490314 @default.
- W2981892560 hasConceptScore W2981892560C33923547 @default.
- W2981892560 hasConceptScore W2981892560C41008148 @default.
- W2981892560 hasConceptScore W2981892560C89600930 @default.
- W2981892560 hasLocation W29818925601 @default.
- W2981892560 hasOpenAccess W2981892560 @default.
- W2981892560 hasPrimaryLocation W29818925601 @default.
- W2981892560 hasRelatedWork W13191208 @default.
- W2981892560 hasRelatedWork W1579239598 @default.
- W2981892560 hasRelatedWork W1580780811 @default.
- W2981892560 hasRelatedWork W2034138900 @default.
- W2981892560 hasRelatedWork W2098950531 @default.
- W2981892560 hasRelatedWork W2142888171 @default.
- W2981892560 hasRelatedWork W2294876597 @default.
- W2981892560 hasRelatedWork W2773745922 @default.
- W2981892560 hasRelatedWork W2803417255 @default.
- W2981892560 hasRelatedWork W2911113553 @default.
- W2981892560 hasRelatedWork W2939753704 @default.
- W2981892560 hasRelatedWork W3008558269 @default.
- W2981892560 hasRelatedWork W3045609116 @default.
- W2981892560 hasRelatedWork W3083006538 @default.
- W2981892560 hasRelatedWork W31085285 @default.
- W2981892560 hasRelatedWork W3132176577 @default.
- W2981892560 hasRelatedWork W3135022317 @default.
- W2981892560 hasRelatedWork W3155036195 @default.
- W2981892560 hasRelatedWork W3162284793 @default.
- W2981892560 hasRelatedWork W3209109096 @default.