Matches in SemOpenAlex for { <https://semopenalex.org/work/W2981937202> ?p ?o ?g. }
- W2981937202 endingPage "1950161" @default.
- W2981937202 startingPage "1950161" @default.
- W2981937202 abstract "The discovery of the [Formula: see text] symmetry was fundamental as to establishing an ordering principle in particle physics. We already studied how to couple the [Formula: see text] symmetry to the gravitational field in four-dimensional curved Lorentzian space–times. The multiplets of equal quantum numbers are translated through natural elements in Riemannian geometry into local multiplets of equal gravitational field. As quark physics developed since in the 1970s, it was necessary to incorporate new symmetries to the models, that ensued in the incorporation of new quantum numbers like charm, for example, charm is an additive quantum number like isospin [Formula: see text] and hypercharge [Formula: see text] and the standard [Formula: see text] diagrams were extended onto another third axis. Then, instead of the fundamental triplet, we have a quartet [Formula: see text] as the smallest representation of the symmetry group, leading to the introduction of [Formula: see text] as the new group of symmetries. In this paper, we will not restrict ourselves exclusively to the symmetry group [Formula: see text] and we will set out to analyze the coupling of the [Formula: see text] symmetry to the gravitational field. To this end, new tetrads will be introduced as we did for the [Formula: see text] case. These tetrads have outstanding properties that enable these constructions. New theorems will be proved regarding the isomorphic nature of these local symmetry gauge groups and tensor products of groups of local tetrad transformations. This is a paper about grand field unification in four-dimensional curved Lorentzian space–times." @default.
- W2981937202 created "2019-11-01" @default.
- W2981937202 creator A5043895368 @default.
- W2981937202 date "2019-10-20" @default.
- W2981937202 modified "2023-10-16" @default.
- W2981937202 title "Tetrads in SU(N) Yang–Mills geometrodynamics" @default.
- W2981937202 cites W109426047 @default.
- W2981937202 cites W112294566 @default.
- W2981937202 cites W1536540171 @default.
- W2981937202 cites W1600392685 @default.
- W2981937202 cites W1609259612 @default.
- W2981937202 cites W1612996888 @default.
- W2981937202 cites W1673177227 @default.
- W2981937202 cites W175349880 @default.
- W2981937202 cites W1789645782 @default.
- W2981937202 cites W1947273351 @default.
- W2981937202 cites W1965352509 @default.
- W2981937202 cites W1971316877 @default.
- W2981937202 cites W1971615006 @default.
- W2981937202 cites W1986479325 @default.
- W2981937202 cites W1986970933 @default.
- W2981937202 cites W1990041710 @default.
- W2981937202 cites W1992077732 @default.
- W2981937202 cites W1996413343 @default.
- W2981937202 cites W1998768335 @default.
- W2981937202 cites W1999032058 @default.
- W2981937202 cites W2007959513 @default.
- W2981937202 cites W2009177096 @default.
- W2981937202 cites W2023988614 @default.
- W2981937202 cites W2029641002 @default.
- W2981937202 cites W2031924034 @default.
- W2981937202 cites W2038915951 @default.
- W2981937202 cites W2045120204 @default.
- W2981937202 cites W2052180425 @default.
- W2981937202 cites W2052538807 @default.
- W2981937202 cites W2064671373 @default.
- W2981937202 cites W2065705517 @default.
- W2981937202 cites W2066240544 @default.
- W2981937202 cites W2068541496 @default.
- W2981937202 cites W2093248109 @default.
- W2981937202 cites W2102179414 @default.
- W2981937202 cites W2111626561 @default.
- W2981937202 cites W2114922591 @default.
- W2981937202 cites W2124154476 @default.
- W2981937202 cites W2131926176 @default.
- W2981937202 cites W2140056616 @default.
- W2981937202 cites W2142520301 @default.
- W2981937202 cites W2151997703 @default.
- W2981937202 cites W2152915961 @default.
- W2981937202 cites W2161783279 @default.
- W2981937202 cites W2165882997 @default.
- W2981937202 cites W2166149230 @default.
- W2981937202 cites W2166436681 @default.
- W2981937202 cites W2168505566 @default.
- W2981937202 cites W2223433365 @default.
- W2981937202 cites W2224432624 @default.
- W2981937202 cites W2231659680 @default.
- W2981937202 cites W2232347689 @default.
- W2981937202 cites W2259553937 @default.
- W2981937202 cites W2515835992 @default.
- W2981937202 cites W2613036058 @default.
- W2981937202 cites W2735507918 @default.
- W2981937202 cites W2762119668 @default.
- W2981937202 cites W2799459430 @default.
- W2981937202 cites W2996841070 @default.
- W2981937202 cites W3021228243 @default.
- W2981937202 cites W3098576385 @default.
- W2981937202 cites W3099485880 @default.
- W2981937202 cites W3099820469 @default.
- W2981937202 cites W3101579204 @default.
- W2981937202 cites W3102303941 @default.
- W2981937202 cites W3102776484 @default.
- W2981937202 cites W3102924294 @default.
- W2981937202 cites W3103497273 @default.
- W2981937202 cites W3105230272 @default.
- W2981937202 cites W3142567759 @default.
- W2981937202 cites W4205756039 @default.
- W2981937202 cites W4211033233 @default.
- W2981937202 cites W4214631095 @default.
- W2981937202 cites W4233907720 @default.
- W2981937202 cites W4234856688 @default.
- W2981937202 cites W4234933822 @default.
- W2981937202 cites W4235582514 @default.
- W2981937202 cites W4242720812 @default.
- W2981937202 cites W4299553510 @default.
- W2981937202 cites W4301652612 @default.
- W2981937202 cites W43399481 @default.
- W2981937202 cites W969661361 @default.
- W2981937202 cites W972589330 @default.
- W2981937202 doi "https://doi.org/10.1142/s0217751x19501616" @default.
- W2981937202 hasPublicationYear "2019" @default.
- W2981937202 type Work @default.
- W2981937202 sameAs 2981937202 @default.
- W2981937202 citedByCount "10" @default.
- W2981937202 countsByYear W29819372022020 @default.
- W2981937202 countsByYear W29819372022021 @default.
- W2981937202 countsByYear W29819372022022 @default.
- W2981937202 countsByYear W29819372022023 @default.